120 lines
3.6 KiB
Python
120 lines
3.6 KiB
Python
from nltk.util import pr
|
|
import pandas as pd
|
|
import numpy as np
|
|
import torch
|
|
from gensim import downloader
|
|
from nltk.tokenize import word_tokenize
|
|
import csv
|
|
|
|
|
|
class NeuralNetworkModel(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
dim = 200
|
|
super(NeuralNetworkModel, self).__init__()
|
|
self.fc1 = torch.nn.Linear(dim, 500)
|
|
self.fc2 = torch.nn.Linear(500, 1)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = torch.relu(x)
|
|
x = self.fc2(x)
|
|
x = torch.sigmoid(x)
|
|
return x
|
|
|
|
|
|
def read_data():
|
|
x_labels = (pd.read_csv('in-header.tsv', sep='\t')).columns
|
|
y_labels = (pd.read_csv('out-header.tsv', sep='\t')).columns
|
|
|
|
x_train = pd.read_table('train/in.tsv', error_bad_lines=False,
|
|
header=None, quoting=csv.QUOTE_NONE, names=x_labels)
|
|
y_train = pd.read_table('train/expected.tsv', error_bad_lines=False,
|
|
header=None, quoting=csv.QUOTE_NONE, names=y_labels)
|
|
x_dev = pd.read_table('dev-0/in.tsv', error_bad_lines=False,
|
|
header=None, quoting=csv.QUOTE_NONE, names=x_labels)
|
|
x_test = pd.read_table('test-A/in.tsv', error_bad_lines=False,
|
|
header=None, quoting=csv.QUOTE_NONE, names=x_labels)
|
|
|
|
# remove some rows for faster development
|
|
remove_n = 200000
|
|
drop_indices = np.random.choice(x_train.index, remove_n, replace=False)
|
|
x_train = x_train.drop(drop_indices)
|
|
y_train = y_train.drop(drop_indices)
|
|
|
|
return x_labels, y_labels, x_train, y_train, x_dev, x_test
|
|
|
|
|
|
x_labels, y_labels, x_train, y_train, x_dev, x_test = read_data()
|
|
|
|
x_train = x_train[x_labels[0]].str.lower()
|
|
x_dev = x_dev[x_labels[0]].str.lower()
|
|
x_test = x_test[x_labels[0]].str.lower()
|
|
y_train = y_train[y_labels[0]]
|
|
|
|
x_train = [word_tokenize(x) for x in x_train]
|
|
x_dev = [word_tokenize(x) for x in x_dev]
|
|
x_test = [word_tokenize(x) for x in x_test]
|
|
|
|
w2v = downloader.load('glove-wiki-gigaword-200')
|
|
|
|
x_train = [np.mean([w2v[word] for word in doc if word in w2v] or [
|
|
np.zeros(200)], axis=0) for doc in x_train]
|
|
x_dev = [np.mean([w2v[word] for word in doc if word in w2v]
|
|
or [np.zeros(200)], axis=0) for doc in x_dev]
|
|
x_test = [np.mean([w2v[word] for word in doc if word in w2v]
|
|
or [np.zeros(200)], axis=0) for doc in x_test]
|
|
|
|
nn_model = NeuralNetworkModel()
|
|
BATCH_SIZE = 5
|
|
criterion = torch.nn.BCELoss()
|
|
optimizer = torch.optim.SGD(nn_model.parameters(), lr=0.1)
|
|
|
|
for epoch in range(5):
|
|
nn_model.train()
|
|
for i in range(0, y_train.shape[0], BATCH_SIZE):
|
|
X = x_train[i:i+BATCH_SIZE]
|
|
X = torch.tensor(X)
|
|
Y = y_train[i:i+BATCH_SIZE]
|
|
Y = torch.tensor(Y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
|
|
|
Y_predictions = nn_model(X.float())
|
|
|
|
loss = criterion(Y_predictions, Y)
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
y_dev = []
|
|
y_test = []
|
|
|
|
nn_model.eval()
|
|
|
|
with torch.no_grad():
|
|
for i in range(0, len(x_dev), BATCH_SIZE):
|
|
X = x_dev[i:i+BATCH_SIZE]
|
|
X = torch.tensor(X)
|
|
|
|
outputs = nn_model(X.float())
|
|
|
|
y = (outputs > 0.5)
|
|
y_dev.extend(y)
|
|
|
|
for i in range(0, len(x_test), BATCH_SIZE):
|
|
X = x_test[i:i+BATCH_SIZE]
|
|
X = torch.tensor(X)
|
|
|
|
outputs = nn_model(X.float())
|
|
|
|
y = (outputs > 0.5)
|
|
y_test.extend(y)
|
|
|
|
y_dev = np.asarray(y_dev, dtype=np.int32)
|
|
y_test = np.asarray(y_test, dtype=np.int32)
|
|
|
|
Y_dev = pd.DataFrame({'label': y_dev})
|
|
Y_test = pd.DataFrame({'label': y_test})
|
|
|
|
Y_dev.to_csv(r'dev-0/out.tsv', sep='\t', index=False, header=False)
|
|
Y_test.to_csv(r'test-A/out.tsv', sep='\t', index=False, header=False)
|