System_Dialogowy_Janet/Code/Modules/ML_NLU_module.py

75 lines
2.8 KiB
Python
Raw Permalink Normal View History

2021-05-27 15:11:28 +02:00
from flair.data import Sentence, Token
from flair.datasets import SentenceDataset
from flair.models import SequenceTagger
class ML_NLU:
2021-05-30 13:31:34 +02:00
def __init__(self):
2021-05-27 15:11:28 +02:00
self.slot_model, self.frame_model = self.setup()
def nolabel2o(self, line, i):
return 'O' if line[i] == 'NoLabel' else line[i]
def conllu2flair(self, sentences, label=None):
fsentences = []
for sentence in sentences:
fsentence = Sentence()
for token in sentence:
ftoken = Token(token['form'])
if label:
ftoken.add_tag(label, token[label])
fsentence.add_token(ftoken)
fsentences.append(fsentence)
return SentenceDataset(fsentences)
def predict(self, sentence):
csentence = [{'form': word} for word in sentence]
fsentence = self.conllu2flair([csentence])[0]
self.slot_model.predict(fsentence)
self.frame_model.predict(fsentence)
possible_intents = {}
for token in fsentence:
for intent in token.annotation_layers["frame"]:
if(intent.value in possible_intents):
possible_intents[intent.value] += intent.score
else:
possible_intents[intent.value] = intent.score
return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence, fsentence)], max(possible_intents)
def setup(self):
slot_model = SequenceTagger.load('slot-model/final-model.pt')
frame_model = SequenceTagger.load('frame-model/final-model.pt')
return slot_model, frame_model
def test_nlu(self, utterance):
if utterance:
slots, act = self.predict(utterance.split())
slots = [x for x in slots if x[1] != 'O']
arguments = self.convert_slot_to_argument(slots)
2021-05-30 14:45:42 +02:00
return self.convert_act_to_list(act, arguments)
2021-05-27 15:11:28 +02:00
else:
return 'Critical Error'
def convert_slot_to_argument(self, slots):
arguments = []
candidate = None
for slot in slots:
if slot[1].startswith("B-"):
if(candidate != None):
arguments.append(candidate)
candidate = [slot[1].replace("B-", ""), slot[0]]
if slot[1].startswith("I-") and candidate != None and slot[1].endswith(candidate[0]):
candidate[1] += " " + slot[0]
if(candidate != None):
arguments.append(candidate)
return [(x[0], x[1]) for x in arguments]
2021-05-30 14:45:42 +02:00
def convert_act_to_list(self, act, slots):
result = []
for i in range(len(slots)):
intent = act
domain = act.split('/')[0]
slot = slots[i][0]
value = slots[i][1]
result.append([intent, domain, slot, value])
return result