Przeniesienie trenowania, łączenie aktów
This commit is contained in:
parent
3c39ab377d
commit
65e298c256
91
Makiety.py
91
Makiety.py
@ -1,18 +1,8 @@
|
|||||||
import jsgf
|
import jsgf
|
||||||
import codecs
|
|
||||||
from conllu import parse_incr
|
|
||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
import os.path
|
from flair.data import Sentence, Token
|
||||||
|
|
||||||
|
|
||||||
from flair.data import Corpus, Sentence, Token
|
|
||||||
from flair.datasets import SentenceDataset
|
from flair.datasets import SentenceDataset
|
||||||
from flair.embeddings import StackedEmbeddings
|
|
||||||
from flair.embeddings import WordEmbeddings
|
|
||||||
from flair.embeddings import CharacterEmbeddings
|
|
||||||
from flair.embeddings import FlairEmbeddings
|
|
||||||
from flair.models import SequenceTagger
|
from flair.models import SequenceTagger
|
||||||
from flair.trainers import ModelTrainer
|
|
||||||
|
|
||||||
import random
|
import random
|
||||||
import torch
|
import torch
|
||||||
@ -30,7 +20,7 @@ class ML_NLU:
|
|||||||
def __init__(self, acts, arguments):
|
def __init__(self, acts, arguments):
|
||||||
self.acts = acts
|
self.acts = acts
|
||||||
self.arguments = arguments
|
self.arguments = arguments
|
||||||
self.model = self.setup()
|
self.slot_model, self.frame_model = self.setup()
|
||||||
|
|
||||||
def nolabel2o(self, line, i):
|
def nolabel2o(self, line, i):
|
||||||
return 'O' if line[i] == 'NoLabel' else line[i]
|
return 'O' if line[i] == 'NoLabel' else line[i]
|
||||||
@ -54,61 +44,48 @@ class ML_NLU:
|
|||||||
return SentenceDataset(fsentences)
|
return SentenceDataset(fsentences)
|
||||||
|
|
||||||
|
|
||||||
def predict(self, model, sentence):
|
def predict(self, sentence):
|
||||||
csentence = [{'form': word} for word in sentence]
|
csentence = [{'form': word} for word in sentence]
|
||||||
fsentence = self.conllu2flair([csentence])[0]
|
fsentence = self.conllu2flair([csentence])[0]
|
||||||
model.predict(fsentence)
|
self.slot_model.predict(fsentence)
|
||||||
return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence, fsentence)]
|
self.frame_model.predict(fsentence)
|
||||||
|
possible_intents = {}
|
||||||
|
for token in fsentence:
|
||||||
|
for intent in token.annotation_layers["frame"]:
|
||||||
|
if(intent.value in possible_intents):
|
||||||
|
possible_intents[intent.value] += intent.score
|
||||||
|
else:
|
||||||
|
possible_intents[intent.value] = intent.score
|
||||||
|
return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence, fsentence)], max(possible_intents)
|
||||||
|
|
||||||
def setup(self):
|
def setup(self):
|
||||||
|
slot_model = SequenceTagger.load('slot-model/final-model.pt')
|
||||||
if os.path.isfile('slot-model/final-model.pt'):
|
frame_model = SequenceTagger.load('frame-model/final-model.pt')
|
||||||
model = SequenceTagger.load('slot-model/final-model.pt')
|
return slot_model, frame_model
|
||||||
else:
|
|
||||||
fields = ['id', 'form', 'frame', 'slot']
|
|
||||||
|
|
||||||
with open('Janet.conllu', encoding='utf-8') as trainfile:
|
|
||||||
trainset = list(parse_incr(trainfile, fields=fields, field_parsers={'slot': self.nolabel2o}))
|
|
||||||
with open('Janet.conllu', encoding='utf-8') as testfile:
|
|
||||||
testset = list(parse_incr(testfile, fields=fields, field_parsers={'slot': self.nolabel2o}))
|
|
||||||
|
|
||||||
tabulate(trainset[0], tablefmt='html')
|
|
||||||
|
|
||||||
corpus = Corpus(train=self.conllu2flair(trainset, 'slot'), test=self.conllu2flair(testset, 'slot'))
|
|
||||||
tag_dictionary = corpus.make_tag_dictionary(tag_type='slot')
|
|
||||||
|
|
||||||
embedding_types = [
|
|
||||||
WordEmbeddings('pl'),
|
|
||||||
FlairEmbeddings('pl-forward'),
|
|
||||||
FlairEmbeddings('pl-backward'),
|
|
||||||
CharacterEmbeddings(),
|
|
||||||
]
|
|
||||||
|
|
||||||
embeddings = StackedEmbeddings(embeddings=embedding_types)
|
|
||||||
tagger = SequenceTagger(hidden_size=256, embeddings=embeddings,
|
|
||||||
tag_dictionary=tag_dictionary,
|
|
||||||
tag_type='slot', use_crf=True)
|
|
||||||
|
|
||||||
trainer = ModelTrainer(tagger, corpus)
|
|
||||||
trainer.train('slot-model',
|
|
||||||
learning_rate=0.1,
|
|
||||||
mini_batch_size=32,
|
|
||||||
max_epochs=10,
|
|
||||||
train_with_dev=False)
|
|
||||||
|
|
||||||
model = SequenceTagger.load('slot-model/final-model.pt')
|
|
||||||
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
def test_nlu(self, utterance):
|
def test_nlu(self, utterance):
|
||||||
|
|
||||||
if utterance:
|
if utterance:
|
||||||
return tabulate(self.predict(self.model, utterance.split()), tablefmt='tsv')
|
slots, act = self.predict(utterance.split())
|
||||||
|
slots = [x for x in slots if x[1] != 'O']
|
||||||
|
arguments = self.convert_slot_to_argument(slots)
|
||||||
|
return {'act': act, 'slots': arguments}
|
||||||
else:
|
else:
|
||||||
return 'Critical Error'
|
return 'Critical Error'
|
||||||
|
|
||||||
|
def convert_slot_to_argument(self, slots):
|
||||||
|
arguments = []
|
||||||
|
candidate = None
|
||||||
|
for slot in slots:
|
||||||
|
if slot[1].startswith("B-"):
|
||||||
|
if(candidate != None):
|
||||||
|
arguments.append(candidate)
|
||||||
|
candidate = [slot[1].replace("B-", ""), slot[0]]
|
||||||
|
if slot[1].startswith("I-") and candidate != None and slot[1].endswith(candidate[0]):
|
||||||
|
candidate[1] += " " + slot[0]
|
||||||
|
if(candidate != None):
|
||||||
|
arguments.append(candidate)
|
||||||
|
return [(x[0], x[1]) for x in arguments]
|
||||||
|
|
||||||
class Book_NLU: #Natural Language Understanding
|
class Book_NLU: #Natural Language Understanding
|
||||||
"""
|
"""
|
||||||
Moduł odpowiedzialny za analizę tekstu. W wyniku jego działania tekstowa reprezentacja wypowiedzi użytkownika zostaje zamieniona na jej reprezentację semantyczną, najczęściej w postaci ramy.
|
Moduł odpowiedzialny za analizę tekstu. W wyniku jego działania tekstowa reprezentacja wypowiedzi użytkownika zostaje zamieniona na jej reprezentację semantyczną, najczęściej w postaci ramy.
|
||||||
|
78
train.py
Normal file
78
train.py
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
from conllu import parse_incr
|
||||||
|
from tabulate import tabulate
|
||||||
|
from flair.data import Corpus, Sentence, Token
|
||||||
|
from flair.datasets import SentenceDataset
|
||||||
|
from flair.embeddings import StackedEmbeddings
|
||||||
|
from flair.embeddings import WordEmbeddings
|
||||||
|
from flair.embeddings import CharacterEmbeddings
|
||||||
|
from flair.embeddings import FlairEmbeddings
|
||||||
|
from flair.models import SequenceTagger
|
||||||
|
from flair.trainers import ModelTrainer
|
||||||
|
|
||||||
|
def nolabel2o(line, i):
|
||||||
|
return 'O' if line[i] == 'NoLabel' else line[i]
|
||||||
|
|
||||||
|
def conllu2flair(sentences, label=None):
|
||||||
|
fsentences = []
|
||||||
|
|
||||||
|
for sentence in sentences:
|
||||||
|
fsentence = Sentence()
|
||||||
|
|
||||||
|
for token in sentence:
|
||||||
|
ftoken = Token(token['form'])
|
||||||
|
|
||||||
|
if label:
|
||||||
|
ftoken.add_tag(label, token[label])
|
||||||
|
|
||||||
|
fsentence.add_token(ftoken)
|
||||||
|
|
||||||
|
fsentences.append(fsentence)
|
||||||
|
|
||||||
|
return SentenceDataset(fsentences)
|
||||||
|
|
||||||
|
fields = ['id', 'form', 'frame', 'slot']
|
||||||
|
|
||||||
|
with open('Janet.conllu', encoding='utf-8') as trainfile:
|
||||||
|
slot_trainset = list(parse_incr(trainfile, fields=fields, field_parsers={'slot': nolabel2o}))
|
||||||
|
with open('Janet.conllu', encoding='utf-8') as trainfile:
|
||||||
|
frame_trainset = list(parse_incr(trainfile, fields=fields, field_parsers={'frame': nolabel2o}))
|
||||||
|
|
||||||
|
tabulate(slot_trainset[0], tablefmt='html')
|
||||||
|
|
||||||
|
|
||||||
|
slot_corpus = Corpus(train=conllu2flair(slot_trainset, 'slot'), test=conllu2flair(slot_trainset, 'slot'))
|
||||||
|
frame_corpus = Corpus(train=conllu2flair(frame_trainset, 'frame'), test=conllu2flair(frame_trainset, 'frame'))
|
||||||
|
|
||||||
|
slot_tag_dictionary = slot_corpus.make_tag_dictionary(tag_type='slot')
|
||||||
|
frame_tag_dictionary = frame_corpus.make_tag_dictionary(tag_type='frame')
|
||||||
|
|
||||||
|
|
||||||
|
embedding_types = [
|
||||||
|
WordEmbeddings('pl'),
|
||||||
|
FlairEmbeddings('pl-forward'),
|
||||||
|
FlairEmbeddings('pl-backward'),
|
||||||
|
CharacterEmbeddings(),
|
||||||
|
]
|
||||||
|
|
||||||
|
embeddings = StackedEmbeddings(embeddings=embedding_types)
|
||||||
|
slot_tagger = SequenceTagger(hidden_size=256, embeddings=embeddings,
|
||||||
|
tag_dictionary=slot_tag_dictionary,
|
||||||
|
tag_type='slot', use_crf=True)
|
||||||
|
frame_tagger = SequenceTagger(hidden_size=256, embeddings=embeddings,
|
||||||
|
tag_dictionary=frame_tag_dictionary,
|
||||||
|
tag_type='frame', use_crf=True)
|
||||||
|
|
||||||
|
# slot_trainer = ModelTrainer(slot_tagger, slot_corpus)
|
||||||
|
# slot_trainer.train('slot-model',
|
||||||
|
# learning_rate=0.1,
|
||||||
|
# mini_batch_size=32,
|
||||||
|
# max_epochs=100,
|
||||||
|
# train_with_dev=False)
|
||||||
|
|
||||||
|
|
||||||
|
frame_trainer = ModelTrainer(frame_tagger, frame_corpus)
|
||||||
|
frame_trainer.train('frame-model',
|
||||||
|
learning_rate=0.1,
|
||||||
|
mini_batch_size=32,
|
||||||
|
max_epochs=100,
|
||||||
|
train_with_dev=False)
|
Loading…
Reference in New Issue
Block a user