First version of ML_NLU

This commit is contained in:
Dominik Strzako 2021-05-16 19:42:35 +02:00
parent 9bf3d9293c
commit eac184bbc7

View File

@ -1,8 +1,116 @@
import jsgf import jsgf
import codecs
from conllu import parse_incr
from tabulate import tabulate
import os.path
from flair.data import Corpus, Sentence, Token
from flair.datasets import SentenceDataset
from flair.embeddings import StackedEmbeddings
from flair.embeddings import WordEmbeddings
from flair.embeddings import CharacterEmbeddings
from flair.embeddings import FlairEmbeddings
from flair.models import SequenceTagger
from flair.trainers import ModelTrainer
class NLU: #Natural Language Understanding import random
import torch
random.seed(42)
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
class ML_NLU:
def __init__(self, acts, arguments):
self.acts = acts
self.arguments = arguments
def nolabel2o(self, line, i):
return 'O' if line[i] == 'NoLabel' else line[i]
def conllu2flair(self, sentences, label=None):
fsentences = []
for sentence in sentences:
fsentence = Sentence()
for token in sentence:
ftoken = Token(token['form'])
if label:
ftoken.add_tag(label, token[label])
fsentence.add_token(ftoken)
fsentences.append(fsentence)
return SentenceDataset(fsentences)
def predict(self, model, sentence):
csentence = [{'form': word} for word in sentence]
fsentence = self.conllu2flair([csentence])[0]
model.predict(fsentence)
return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence, fsentence)]
def setup(self):
if os.path.isfile('slot-model/final-model.pt'):
model = SequenceTagger.load('slot-model/final-model.pt')
else:
fields = ['id', 'form', 'frame', 'slot']
with open('Janet_test.conllu', encoding='utf-8') as trainfile:
trainset = list(parse_incr(trainfile, fields=fields, field_parsers={'slot': self.nolabel2o}))
with open('Janet_test.conllu', encoding='utf-8') as testfile:
testset = list(parse_incr(testfile, fields=fields, field_parsers={'slot': self.nolabel2o}))
tabulate(trainset[0], tablefmt='html')
corpus = Corpus(train=self.conllu2flair(trainset, 'slot'), test=self.conllu2flair(testset, 'slot'))
tag_dictionary = corpus.make_tag_dictionary(tag_type='slot')
embedding_types = [
WordEmbeddings('pl'),
FlairEmbeddings('pl-forward'),
FlairEmbeddings('pl-backward'),
CharacterEmbeddings(),
]
embeddings = StackedEmbeddings(embeddings=embedding_types)
tagger = SequenceTagger(hidden_size=256, embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type='slot', use_crf=True)
trainer = ModelTrainer(tagger, corpus)
trainer.train('slot-model',
learning_rate=0.1,
mini_batch_size=32,
max_epochs=10,
train_with_dev=False)
model = SequenceTagger.load('slot-model/final-model.pt')
return model
def test_nlu(self, utterance):
model = self.setup()
if utterance:
return tabulate(self.predict(model, 'doktor lekarza rodzinnego najlepiej dzisiaj w godzinach popołudniowych dziś '.split()), tablefmt='html')
else:
return 'Critical Error'
class Book_NLU: #Natural Language Understanding
""" """
Moduł odpowiedzialny za analizę tekstu. W wyniku jego działania tekstowa reprezentacja wypowiedzi użytkownika zostaje zamieniona na jej reprezentację semantyczną, najczęściej w postaci ramy. Moduł odpowiedzialny za analizę tekstu. W wyniku jego działania tekstowa reprezentacja wypowiedzi użytkownika zostaje zamieniona na jej reprezentację semantyczną, najczęściej w postaci ramy.
@ -136,10 +244,11 @@ class Janet:
self.nlg = NLG(self.acts, self.arguments) self.nlg = NLG(self.acts, self.arguments)
self.dp = DP(self.acts, self.arguments) self.dp = DP(self.acts, self.arguments)
self.dst = DST(self.acts, self.arguments) self.dst = DST(self.acts, self.arguments)
self.nlu = NLU(self.acts, self.arguments, jsgf.parse_grammar_file('book.jsgf')) self.nlu = Book_NLU(self.acts, self.arguments, jsgf.parse_grammar_file('book.jsgf'))
self.nlu_v2 = ML_NLU(self.acts, self.arguments)
def test(self, command): def test(self, command):
out = self.nlu.test_nlu(command) out = self.nlu_v2.test_nlu(command)
return out return out
def process(self, command): def process(self, command):