import jsgf from tabulate import tabulate from flair.data import Sentence, Token from flair.datasets import SentenceDataset from flair.models import SequenceTagger class ML_NLU: def __init__(self): self.slot_model, self.frame_model = self.setup() def nolabel2o(self, line, i): return 'O' if line[i] == 'NoLabel' else line[i] def conllu2flair(self, sentences, label=None): fsentences = [] for sentence in sentences: fsentence = Sentence() for token in sentence: ftoken = Token(token['form']) if label: ftoken.add_tag(label, token[label]) fsentence.add_token(ftoken) fsentences.append(fsentence) return SentenceDataset(fsentences) def predict(self, sentence): csentence = [{'form': word} for word in sentence] fsentence = self.conllu2flair([csentence])[0] self.slot_model.predict(fsentence) self.frame_model.predict(fsentence) possible_intents = {} for token in fsentence: for intent in token.annotation_layers["frame"]: if(intent.value in possible_intents): possible_intents[intent.value] += intent.score else: possible_intents[intent.value] = intent.score return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence, fsentence)], max(possible_intents) def setup(self): slot_model = SequenceTagger.load('slot-model/final-model.pt') frame_model = SequenceTagger.load('frame-model/final-model.pt') return slot_model, frame_model def test_nlu(self, utterance): if utterance: slots, act = self.predict(utterance.split()) slots = [x for x in slots if x[1] != 'O'] arguments = self.convert_slot_to_argument(slots) return self.convert_act_to_list(act, arguments) else: return 'Critical Error' def convert_slot_to_argument(self, slots): arguments = [] candidate = None for slot in slots: if slot[1].startswith("B-"): if(candidate != None): arguments.append(candidate) candidate = [slot[1].replace("B-", ""), slot[0]] if slot[1].startswith("I-") and candidate != None and slot[1].endswith(candidate[0]): candidate[1] += " " + slot[0] if(candidate != None): arguments.append(candidate) return [(x[0], x[1]) for x in arguments] def convert_act_to_list(self, act, slots): result = [] for i in range(len(slots)): intent = act domain = act.split('/')[0] slot = slots[i][0] value = slots[i][1] result.append([intent, domain, slot, value]) return result