77 lines
2.8 KiB
Python
77 lines
2.8 KiB
Python
import jsgf
|
|
from tabulate import tabulate
|
|
from flair.data import Sentence, Token
|
|
from flair.datasets import SentenceDataset
|
|
from flair.models import SequenceTagger
|
|
|
|
class ML_NLU:
|
|
def __init__(self):
|
|
self.slot_model, self.frame_model = self.setup()
|
|
|
|
def nolabel2o(self, line, i):
|
|
return 'O' if line[i] == 'NoLabel' else line[i]
|
|
|
|
def conllu2flair(self, sentences, label=None):
|
|
fsentences = []
|
|
for sentence in sentences:
|
|
fsentence = Sentence()
|
|
for token in sentence:
|
|
ftoken = Token(token['form'])
|
|
if label:
|
|
ftoken.add_tag(label, token[label])
|
|
fsentence.add_token(ftoken)
|
|
fsentences.append(fsentence)
|
|
return SentenceDataset(fsentences)
|
|
|
|
|
|
def predict(self, sentence):
|
|
csentence = [{'form': word} for word in sentence]
|
|
fsentence = self.conllu2flair([csentence])[0]
|
|
self.slot_model.predict(fsentence)
|
|
self.frame_model.predict(fsentence)
|
|
possible_intents = {}
|
|
for token in fsentence:
|
|
for intent in token.annotation_layers["frame"]:
|
|
if(intent.value in possible_intents):
|
|
possible_intents[intent.value] += intent.score
|
|
else:
|
|
possible_intents[intent.value] = intent.score
|
|
return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence, fsentence)], max(possible_intents)
|
|
|
|
def setup(self):
|
|
slot_model = SequenceTagger.load('slot-model/final-model.pt')
|
|
frame_model = SequenceTagger.load('frame-model/final-model.pt')
|
|
return slot_model, frame_model
|
|
|
|
def test_nlu(self, utterance):
|
|
if utterance:
|
|
slots, act = self.predict(utterance.split())
|
|
slots = [x for x in slots if x[1] != 'O']
|
|
arguments = self.convert_slot_to_argument(slots)
|
|
return self.convert_act_to_list(act, arguments)
|
|
else:
|
|
return 'Critical Error'
|
|
|
|
def convert_slot_to_argument(self, slots):
|
|
arguments = []
|
|
candidate = None
|
|
for slot in slots:
|
|
if slot[1].startswith("B-"):
|
|
if(candidate != None):
|
|
arguments.append(candidate)
|
|
candidate = [slot[1].replace("B-", ""), slot[0]]
|
|
if slot[1].startswith("I-") and candidate != None and slot[1].endswith(candidate[0]):
|
|
candidate[1] += " " + slot[0]
|
|
if(candidate != None):
|
|
arguments.append(candidate)
|
|
return [(x[0], x[1]) for x in arguments]
|
|
|
|
def convert_act_to_list(self, act, slots):
|
|
result = []
|
|
for i in range(len(slots)):
|
|
intent = act
|
|
domain = act.split('/')[0]
|
|
slot = slots[i][0]
|
|
value = slots[i][1]
|
|
result.append([intent, domain, slot, value])
|
|
return result |