nn trigram
This commit is contained in:
parent
3882f245bb
commit
c1e6d53513
Binary file not shown.
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
40
nn.py
Normal file
40
nn.py
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
import torch
|
||||||
|
from utils import get_word_lines_from_data
|
||||||
|
from torchtext.vocab import build_vocab_from_iterator
|
||||||
|
import itertools
|
||||||
|
|
||||||
|
|
||||||
|
class Trigrams(torch.utils.data.IterableDataset):
|
||||||
|
def __init__(self, data, vocabulary_size):
|
||||||
|
self.vocab = build_vocab_from_iterator(
|
||||||
|
get_word_lines_from_data(data),
|
||||||
|
max_tokens = vocabulary_size,
|
||||||
|
specials = ['<unk>'])
|
||||||
|
self.vocab.set_default_index(self.vocab['<unk>'])
|
||||||
|
self.vocabulary_size = vocabulary_size
|
||||||
|
self.data = data
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def look_ahead_iterator(gen):
|
||||||
|
w1 = None
|
||||||
|
for item in gen:
|
||||||
|
if w1 is not None:
|
||||||
|
yield (w1, item)
|
||||||
|
w1 = item
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return self.look_ahead_iterator(
|
||||||
|
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_data(self.data))))
|
||||||
|
|
||||||
|
class Model(torch.nn.Module):
|
||||||
|
def __init__(self, vocabulary_size, embedding_size):
|
||||||
|
super(Model, self).__init__()
|
||||||
|
self.model = torch.nn.Sequential(
|
||||||
|
torch.nn.Embedding(vocabulary_size, embedding_size),
|
||||||
|
torch.nn.Linear(embedding_size, vocabulary_size),
|
||||||
|
torch.nn.Linear(embedding_size, vocabulary_size),
|
||||||
|
torch.nn.Softmax()
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.model(x)
|
BIN
processed_train.txt
Normal file
BIN
processed_train.txt
Normal file
Binary file not shown.
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
97
tri_nn.py
Normal file
97
tri_nn.py
Normal file
@ -0,0 +1,97 @@
|
|||||||
|
import torch
|
||||||
|
import csv
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
import pandas as pd
|
||||||
|
from os.path import exists
|
||||||
|
|
||||||
|
from utils import read_csv, clean_text, get_words_from_line
|
||||||
|
from nn import Trigrams, Model
|
||||||
|
|
||||||
|
data = read_csv("train/in.tsv.xz")
|
||||||
|
train_words = read_csv("train/expected.tsv")
|
||||||
|
|
||||||
|
train_data = data[[6, 7]]
|
||||||
|
train_data = pd.concat([train_data, train_words], axis=1)
|
||||||
|
train_data = train_data[6] + train_data[0] + train_data[7]
|
||||||
|
train_data = train_data.apply(clean_text)
|
||||||
|
|
||||||
|
vocab_size = 30000
|
||||||
|
embed_size = 150
|
||||||
|
|
||||||
|
train_dataset = Trigrams(train_data, vocab_size)
|
||||||
|
|
||||||
|
##################################################################################
|
||||||
|
|
||||||
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||||
|
model = Model(vocab_size, embed_size).to(device)
|
||||||
|
print(device)
|
||||||
|
if(not exists('model1.bin')):
|
||||||
|
data = DataLoader(train_dataset, batch_size=8000)
|
||||||
|
optimizer = torch.optim.Adam(model.parameters())
|
||||||
|
criterion = torch.nn.NLLLoss()
|
||||||
|
|
||||||
|
model.train()
|
||||||
|
step = 0
|
||||||
|
for i in range(2):
|
||||||
|
print(f"EPOCH {i}=========================")
|
||||||
|
for x, y in data:
|
||||||
|
x = x.to(device)
|
||||||
|
y = y.to(device)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
ypredicted = model(x)
|
||||||
|
loss = criterion(torch.log(ypredicted), y)
|
||||||
|
if step % 100 == 0:
|
||||||
|
print(step, loss)
|
||||||
|
step += 1
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
torch.save(model.state_dict(), 'model1.bin')
|
||||||
|
else:
|
||||||
|
print("Loading model1")
|
||||||
|
model.load_state_dict(torch.load('model1.bin'))
|
||||||
|
|
||||||
|
###################################################################
|
||||||
|
|
||||||
|
vocab = train_dataset.vocab
|
||||||
|
|
||||||
|
def predict(tokens):
|
||||||
|
ixs = torch.tensor(vocab.forward(tokens)).to(device)
|
||||||
|
out = model(ixs)
|
||||||
|
top = torch.topk(out[0], 8)
|
||||||
|
top_indices = top.indices.tolist()
|
||||||
|
top_probs = top.values.tolist()
|
||||||
|
top_words = vocab.lookup_tokens(top_indices)
|
||||||
|
result = ""
|
||||||
|
for word, prob in list(zip(top_words, top_probs)):
|
||||||
|
result += f"{word}:{prob} "
|
||||||
|
# result += f':0.01'
|
||||||
|
return result
|
||||||
|
|
||||||
|
DEFAULT_PREDICTION = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
||||||
|
|
||||||
|
def predict_file(result_path, data):
|
||||||
|
with open(result_path, "w+", encoding="UTF-8") as f:
|
||||||
|
for row in data:
|
||||||
|
result = {}
|
||||||
|
before = None
|
||||||
|
for before in get_words_from_line(clean_text(str(row)), False):
|
||||||
|
pass
|
||||||
|
before = [before]
|
||||||
|
print(before)
|
||||||
|
if(len(before) < 1):
|
||||||
|
result = DEFAULT_PREDICTION
|
||||||
|
else:
|
||||||
|
result = predict(before)
|
||||||
|
result = result.strip()
|
||||||
|
f.write(result + "\n")
|
||||||
|
print(result)
|
||||||
|
|
||||||
|
dev_data = pd.read_csv("dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
||||||
|
dev_data = dev_data.apply(clean_text)
|
||||||
|
predict_file("dev-0/out.tsv", dev_data)
|
||||||
|
|
||||||
|
test_data = pd.read_csv("test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
||||||
|
test_data = test_data.apply(clean_text)
|
||||||
|
predict_file("test-A/out.tsv", test_data)
|
14
utils.py
14
utils.py
@ -22,6 +22,7 @@ def clean_text(text):
|
|||||||
res = res.replace("’", "'")
|
res = res.replace("’", "'")
|
||||||
res = REM.sub("", res)
|
res = REM.sub("", res)
|
||||||
res = REP.sub(" ", res)
|
res = REP.sub(" ", res)
|
||||||
|
res = res.replace("'t", " not")
|
||||||
res = res.replace("'s", " is")
|
res = res.replace("'s", " is")
|
||||||
res = res.replace("'ll", " will")
|
res = res.replace("'ll", " will")
|
||||||
res = res.replace("won't", "will not")
|
res = res.replace("won't", "will not")
|
||||||
@ -30,4 +31,17 @@ def clean_text(text):
|
|||||||
res = res.replace("'ve'", "have")
|
res = res.replace("'ve'", "have")
|
||||||
return res.replace("'m", " am")
|
return res.replace("'m", " am")
|
||||||
|
|
||||||
|
def get_words_from_line(line, specials = True):
|
||||||
|
line = line.rstrip()
|
||||||
|
if specials:
|
||||||
|
yield '<s>'
|
||||||
|
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
|
||||||
|
yield m.group(0).lower()
|
||||||
|
if specials:
|
||||||
|
yield '</s>'
|
||||||
|
|
||||||
|
|
||||||
|
def get_word_lines_from_data(d):
|
||||||
|
for line in d:
|
||||||
|
yield get_words_from_line(line)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user