from collections import Counter from nltk import bigrams, word_tokenize from utils import read_csv, ENCODING, clean_text DEFAULT_PREDICTION = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1" def train_model(data, model,vocab,alpha): for _, row in data.iterrows(): words = word_tokenize(clean_text(row["607"])) for w1, w2 in bigrams(words, pad_left=True, pad_right=True): if w1 and w2: model[w2][w1] += 1 vocab.add(w2) vocab.add(w1) for w2 in model: total_count = float(sum(model[w2].values())) denominator = total_count + alpha * len(vocab) for w1 in model[w2]: nominator = model[w2][w1] + alpha model[w2][w1] = nominator / denominator def predict_data(read_path, save_path, model): data = read_csv(read_path) with open(save_path, "w", encoding=ENCODING) as f: for _, row in data.iterrows(): words = word_tokenize(clean_text(row[7])) if len(words) < 3: prediction = DEFAULT_PREDICTION else: prediction = predict(words[0], model) f.write(prediction + "\n") def predict(word, model): predictions = dict(model[word]) most_common = dict(Counter(predictions).most_common(6)) total_prob = 0.0 str_prediction = "" for word, prob in most_common.items(): total_prob += prob str_prediction += f"{word}:{prob} " if total_prob == 0.0: return DEFAULT_PREDICTION rem_prob = 1 - total_prob if rem_prob < 0.01: rem_prob = 0.01 str_prediction += f":{rem_prob}" return str_prediction