import torch import csv torch.cuda.empty_cache() from torch.utils.data import DataLoader import pandas as pd from os.path import exists from utils import read_csv, clean_text, get_words_from_line from nn import Bigrams, Model data = read_csv("train/in.tsv.xz") train_words = read_csv("train/expected.tsv") train_data = data[[6, 7]] train_data = pd.concat([train_data, train_words], axis=1) train_data = train_data[6] + train_data[0] + train_data[7] train_data = train_data.apply(clean_text) vocab_size = 30000 embed_size = 150 train_dataset = Bigrams(train_data, vocab_size) ################################################################################## device = 'cuda' if torch.cuda.is_available() else 'cpu' model = Model(vocab_size, embed_size).to(device) print(device) if(not exists('model1.bin')): data = DataLoader(train_dataset, batch_size=8000) optimizer = torch.optim.Adam(model.parameters()) criterion = torch.nn.NLLLoss() model.train() step = 0 for i in range(2): print(f"EPOCH {i}=========================") for x, y in data: x = x.to(device) y = y.to(device) optimizer.zero_grad() ypredicted = model(x) loss = criterion(torch.log(ypredicted), y) if step % 100 == 0: print(step, loss) step += 1 loss.backward() optimizer.step() torch.save(model.state_dict(), 'model1.bin') else: print("Loading model1") model.load_state_dict(torch.load('model1.bin')) ################################################################### vocab = train_dataset.vocab def predict(tokens): ixs = torch.tensor(vocab.forward(tokens)).to(device) out = model(ixs) top = torch.topk(out[0], 8) top_indices = top.indices.tolist() top_probs = top.values.tolist() top_words = vocab.lookup_tokens(top_indices) result = "" for word, prob in list(zip(top_words, top_probs)): result += f"{word}:{prob} " # result += f':0.01' return result DEFAULT_PREDICTION = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1" def predict_file(result_path, data): with open(result_path, "w+", encoding="UTF-8") as f: for row in data: result = {} before = None for before in get_words_from_line(clean_text(str(row)), False): pass before = [before] print(before) if(len(before) < 1): result = DEFAULT_PREDICTION else: result = predict(before) result = result.strip() f.write(result + "\n") print(result) dev_data = pd.read_csv("dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6] dev_data = dev_data.apply(clean_text) predict_file("dev-0/out.tsv", dev_data) test_data = pd.read_csv("test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6] test_data = test_data.apply(clean_text) predict_file("test-A/out.tsv", test_data)