challenging-america-word-ga.../train.py
2022-04-11 00:20:54 +02:00

57 lines
1.6 KiB
Python

from collections import Counter
from nltk import bigrams, word_tokenize
from utils import read_csv, ENCODING, clean_text
DEFAULT_PREDICTION = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
def train_model(data, model,vocab,alpha):
for _, row in data.iterrows():
words = word_tokenize(clean_text(row["607"]))
for w1, w2 in bigrams(words, pad_left=True, pad_right=True):
if w1 and w2:
model[w2][w1] += 1
vocab.add(w2)
vocab.add(w1)
for w2 in model:
total_count = float(sum(model[w2].values()))
denominator = total_count + alpha * len(vocab)
for w1 in model[w2]:
nominator = model[w2][w1] + alpha
model[w2][w1] /= nominator / denominator
def predict_data(read_path, save_path, model):
data = read_csv(read_path)
with open(save_path, "w", encoding=ENCODING) as f:
for _, row in data.iterrows():
words = word_tokenize(clean_text(row[7]))
if len(words) < 3:
prediction = DEFAULT_PREDICTION
else:
prediction = predict(words[0], model)
f.write(prediction + "\n")
def predict(word, model):
predictions = dict(model[word])
most_common = dict(Counter(predictions).most_common(6))
total_prob = 0.0
str_prediction = ""
for word, prob in most_common.items():
total_prob += prob
str_prediction += f"{word}:{prob} "
if total_prob == 0.0:
return DEFAULT_PREDICTION
rem_prob = 1 - total_prob
if rem_prob < 0.01:
rem_prob = 0.01
str_prediction += f":{rem_prob}"
return str_prediction