mlproject

This commit is contained in:
Dominik Strzako 2021-05-16 11:47:17 +02:00
parent c7a04777ef
commit 1dd2bba636
5 changed files with 85 additions and 1 deletions

View File

@ -31,7 +31,7 @@ pipeline {
steps steps
{ {
catchError { catchError {
sh 'python3.8 Zadanie_06_training.py ${BATCH_SIZE} ${EPOCHS}' sh 'python3.8 Zadanie_06_and_07_training.py ${BATCH_SIZE} ${EPOCHS}'
} }
} }
} }

11
MLproject Normal file
View File

@ -0,0 +1,11 @@
name: 434788-mlflow
docker_env:
image: snowycocoon/ium_434788:4
entry_points:
main:
parameters:
batch_size: {type: int, default: 16}
epochs: {type: int, default: 15}
command: "python3 Zadanie_08_MLflow.py {batch_size} {epochs}"

73
Zadanie_08_MLflow.py Normal file
View File

@ -0,0 +1,73 @@
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense
from sklearn.metrics import accuracy_score, classification_report
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
import sys
from sklearn.preprocessing import StandardScaler, LabelEncoder
from tensorflow.keras.optimizers import Adam
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from datetime import datetime
import os
import sys
import mlflow
with mlflow.start_run():
batch_param = int(sys.argv[1]) if len(sys.argv) > 1 else 16
epoch_param = int(sys.argv[2]) if len(sys.argv) > 2 else 5
mlflow.log_param("batch_size: ", batch_param)
mlflow.log_param("epochs: ", epoch_param)
wine=pd.read_csv('train.csv')
y = wine['quality']
x = wine.drop('quality', axis=1)
citricacid = x['fixed acidity'] * x['citric acid']
citric_acidity = pd.DataFrame(citricacid, columns=['citric_accidity'])
density_acidity = x['fixed acidity'] * x['density']
density_acidity = pd.DataFrame(density_acidity, columns=['density_acidity'])
x = wine.join(citric_acidity).join(density_acidity)
bins = (2, 5, 8)
gnames = ['bad', 'nice']
y = pd.cut(y, bins = bins, labels = gnames)
enc = LabelEncoder()
yenc = enc.fit_transform(y)
scale = StandardScaler()
scaled_x = scale.fit_transform(x)
NeuralModel = Sequential([
Dense(128, activation='relu', input_shape=(14,)),
Dense(32, activation='relu'),
Dense(64, activation='relu'),
Dense(64, activation='relu'),
Dense(64, activation='relu'),
Dense(1, activation='sigmoid')
])
rms = Adam(lr=0.0003)
NeuralModel.compile(optimizer=rms, loss='binary_crossentropy', metrics=['accuracy'])
NeuralModel.fit(scaled_x, yenc, batch_size= batch_param, epochs = epoch_param) #verbose = 1
NeuralModel.save('wine_model.h5')
#TO TYLKO NA POTRZEBY ZADANIA
y_pred = NeuralModel.predict(scaled_x)
y_pred = np.around(y_pred, decimals=0)
results = accuracy_score(yenc,y_pred)
mlflow.log_metric("Accuracy: ", results)