super wyniki ewaluacji

This commit is contained in:
Dominik Strzako 2021-05-15 16:59:57 +02:00
parent ca74151be3
commit 96648232b5
2 changed files with 66 additions and 29 deletions

View File

@ -1,25 +1,48 @@
import pandas as pd
import numpy as np
from os import path
from tensorflow import keras
import sys
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, classification_report
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler, LabelEncoder
model = keras.models.load_model('wine_model.h5')
print('evaluating')
test_df =pd.read_csv('test.csv')
y_test = test_df.quality
x_test = test_df.drop(['quality'], axis= 1)
data =pd.read_csv('test.csv')
x_test=((x_test-x_test.min())/(x_test.max()-x_test.min())) #Normalizacja
#########################################
y_pred = model.predict(x_test)
y = data['quality']
x = data.drop('quality', axis=1)
citricacid = x['fixed acidity'] * x['citric acid']
citric_acidity = pd.DataFrame(citricacid, columns=['citric_accidity'])
density_acidity = x['fixed acidity'] * x['density']
density_acidity = pd.DataFrame(density_acidity, columns=['density_acidity'])
x = data.join(citric_acidity).join(density_acidity)
print(y)
bins = (2, 5, 8)
gnames = ['bad', 'nice']
y = pd.cut(y, bins = bins, labels = gnames)
enc = LabelEncoder()
yenc = enc.fit_transform(y)
scale = StandardScaler()
scaled_x = scale.fit_transform(x)
##################################
y_pred = model.predict(scaled_x)
y_pred = np.around(y_pred, decimals=0)
results = accuracy_score(y_test,y_pred)
results = accuracy_score(yenc,y_pred)
with open('results.txt', 'a+', encoding="UTF-8") as f:
f.write(str(results) +"\n")

View File

@ -4,33 +4,47 @@ from sklearn.metrics import accuracy_score, classification_report
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
import sys
from sklearn.preprocessing import StandardScaler, LabelEncoder
from tensorflow.keras.optimizers import Adam
wine=pd.read_csv('train.csv')
wine
y = wine.quality
y.head()
y = wine['quality']
x = wine.drop('quality', axis=1)
x = wine.drop(['quality'], axis= 1)
x.head()
citricacid = x['fixed acidity'] * x['citric acid']
citric_acidity = pd.DataFrame(citricacid, columns=['citric_accidity'])
x=((x-x.min())/(x.max()-x.min())) #Normalizacja
density_acidity = x['fixed acidity'] * x['density']
density_acidity = pd.DataFrame(density_acidity, columns=['density_acidity'])
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
def regression_model():
model = Sequential()
model.add(Dense(4,activation = "relu", input_shape = (x_train.shape[1],)))
model.add(Dense(8,activation = "relu"))
model.add(Dense(8,activation = "relu"))
model.add(Dense(1,activation = "relu"))
model.compile(optimizer = "adam", loss = "mean_squared_error")
return model
x = wine.join(citric_acidity).join(density_acidity)
model = regression_model()
model.fit(x_train, y_train, batch_size=int(sys.argv[1]), epochs = int(sys.argv[1])) #verbose = 1
bins = (2, 5, 8)
gnames = ['bad', 'nice']
y = pd.cut(y, bins = bins, labels = gnames)
model.save('wine_model.h5')
enc = LabelEncoder()
yenc = enc.fit_transform(y)
scale = StandardScaler()
scaled_x = scale.fit_transform(x)
NeuralModel = Sequential([
Dense(128, activation='relu', input_shape=(14,)),
Dense(32, activation='relu'),
Dense(64, activation='relu'),
Dense(64, activation='relu'),
Dense(64, activation='relu'),
Dense(1, activation='sigmoid')
])
rms = Adam(lr=0.0003)
NeuralModel.compile(optimizer=rms, loss='binary_crossentropy', metrics=['accuracy'])
NeuralModel.fit(scaled_x, yenc, epochs=15) #verbose = 1
NeuralModel.save('wine_model.h5')