Zadanie 6

This commit is contained in:
Dominik Strzako 2021-05-13 19:18:15 +02:00
parent b40e075716
commit aa46dae731
2 changed files with 86 additions and 0 deletions

48
Jenkinsfile_train Normal file
View File

@ -0,0 +1,48 @@
pipeline {
agent {dockerfile true}
parameters {
buildSelector(
defaultSelector: lastSuccessful(),
description: 'Which build to use for copying artifacts',
name: 'BUILD_SELECTOR')
string(
defaultValue: '500',
description: 'Enter the number of Epochs',
name: 'epochs',
trim: false)
}
stages {
stage('copyArtifacts') {
steps {
copyArtifacts fingerprintArtifacts: true, projectName: 's434788-create-dataset', selector: buildParameter('BUILD_SELECTOR')
sh 'python3 lab06_training.py ${epochs}'
}
}
stage('Archive artifacts') {
steps{
archiveArtifacts 'model_movies/**'
}
}
}
post {
success {
build job: 's430705-evaluation/master'
mail body: 'SUCCESS',
subject: 's430705',
to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
}
unstable {
mail body: 'UNSTABLE', subject: 's430705', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
}
failure {
mail body: 'FAILURE', subject: 's430705', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
}
changed {
mail body: 'CHANGED', subject: 's430705', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
}
}
}

38
Zadanie_06_training.py Normal file
View File

@ -0,0 +1,38 @@
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense
from sklearn.metrics import accuracy_score, classification_report
import pandas as pd
from sklearn.model_selection import train_test_split
import wget
import numpy as np
import os
url = 'https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv'
wget.download(url, out='winequality-red.csv', bar=None)
wine=pd.read_csv('winequality-red.csv')
wine
y = wine.quality
y.head()
x = wine.drop(['quality'], axis= 1)
x.head()
x=((x-x.min())/(x.max()-x.min())) #Normalizacja
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
def regression_model():
model = Sequential()
model.add(Dense(32,activation = "relu", input_shape = (x_train.shape[1],)))
model.add(Dense(64,activation = "relu"))
model.add(Dense(1,activation = "relu"))
model.compile(optimizer = "adam", loss = "mean_squared_error")
return model
model = regression_model()
model.fit(x_train, y_train, epochs = 600, verbose = 1)
model.save('wine_model')