Zadanie 6
This commit is contained in:
parent
b40e075716
commit
aa46dae731
48
Jenkinsfile_train
Normal file
48
Jenkinsfile_train
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
pipeline {
|
||||||
|
agent {dockerfile true}
|
||||||
|
parameters {
|
||||||
|
buildSelector(
|
||||||
|
defaultSelector: lastSuccessful(),
|
||||||
|
description: 'Which build to use for copying artifacts',
|
||||||
|
name: 'BUILD_SELECTOR')
|
||||||
|
string(
|
||||||
|
defaultValue: '500',
|
||||||
|
description: 'Enter the number of Epochs',
|
||||||
|
name: 'epochs',
|
||||||
|
trim: false)
|
||||||
|
}
|
||||||
|
|
||||||
|
stages {
|
||||||
|
stage('copyArtifacts') {
|
||||||
|
steps {
|
||||||
|
copyArtifacts fingerprintArtifacts: true, projectName: 's434788-create-dataset', selector: buildParameter('BUILD_SELECTOR')
|
||||||
|
sh 'python3 lab06_training.py ${epochs}'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
stage('Archive artifacts') {
|
||||||
|
steps{
|
||||||
|
archiveArtifacts 'model_movies/**'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
post {
|
||||||
|
success {
|
||||||
|
|
||||||
|
build job: 's430705-evaluation/master'
|
||||||
|
mail body: 'SUCCESS',
|
||||||
|
subject: 's430705',
|
||||||
|
to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||||
|
}
|
||||||
|
unstable {
|
||||||
|
mail body: 'UNSTABLE', subject: 's430705', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||||
|
}
|
||||||
|
failure {
|
||||||
|
mail body: 'FAILURE', subject: 's430705', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||||
|
}
|
||||||
|
changed {
|
||||||
|
mail body: 'CHANGED', subject: 's430705', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
38
Zadanie_06_training.py
Normal file
38
Zadanie_06_training.py
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
from tensorflow.keras.models import Sequential, load_model
|
||||||
|
from tensorflow.keras.layers import Dense
|
||||||
|
from sklearn.metrics import accuracy_score, classification_report
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
import wget
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
|
||||||
|
url = 'https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv'
|
||||||
|
wget.download(url, out='winequality-red.csv', bar=None)
|
||||||
|
|
||||||
|
wine=pd.read_csv('winequality-red.csv')
|
||||||
|
wine
|
||||||
|
|
||||||
|
y = wine.quality
|
||||||
|
y.head()
|
||||||
|
|
||||||
|
x = wine.drop(['quality'], axis= 1)
|
||||||
|
x.head()
|
||||||
|
|
||||||
|
x=((x-x.min())/(x.max()-x.min())) #Normalizacja
|
||||||
|
|
||||||
|
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
|
||||||
|
|
||||||
|
def regression_model():
|
||||||
|
model = Sequential()
|
||||||
|
model.add(Dense(32,activation = "relu", input_shape = (x_train.shape[1],)))
|
||||||
|
model.add(Dense(64,activation = "relu"))
|
||||||
|
model.add(Dense(1,activation = "relu"))
|
||||||
|
|
||||||
|
model.compile(optimizer = "adam", loss = "mean_squared_error")
|
||||||
|
return model
|
||||||
|
|
||||||
|
model = regression_model()
|
||||||
|
model.fit(x_train, y_train, epochs = 600, verbose = 1)
|
||||||
|
|
||||||
|
model.save('wine_model')
|
Loading…
Reference in New Issue
Block a user