Poprawki do zajęć 3,4 i 5

This commit is contained in:
Dominik Strzako 2021-05-13 14:08:32 +02:00
parent 33d62c375c
commit b40e075716
8 changed files with 58 additions and 193 deletions

View File

@ -1,2 +1,2 @@
#Uruchomienie skryptu i wyświetlenie 10 pierwszych wierszy wyjściowej tabeli #Uruchomienie skryptu i wyświetlenie 10 pierwszych wierszy wyjściowej tabeli
python3 Zadanie_5_Docker.py python3 Zadanie_05_Docker.py

View File

@ -20,9 +20,8 @@ RUN pip3 install --user sacred
WORKDIR /app WORKDIR /app
# Skopiujmy nasz skrypt do katalogu /app w kontenerze # Skopiujmy nasz skrypt do katalogu /app w kontenerze
COPY ./test.sh ./ COPY ./Docker_todo.sh ./
COPY ./Python_file.py ./ COPY ./Zadanie_05_Docker.py ./
COPY ./Zadanie_5_Docker.py ./
# Domyślne polecenie, które zostanie uruchomione w kontenerze po jego starcie # Domyślne polecenie, które zostanie uruchomione w kontenerze po jego starcie
CMD ./test.sh CMD ./Docker_todo.sh

View File

@ -1,31 +0,0 @@
import wget
url = 'https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv'
wget.download(url, out='winequality-red.csv', bar=None)
import pandas as pd
wine=pd.read_csv('winequality-red.csv')
wine
from sklearn.model_selection import train_test_split
wine_train, wine_test = train_test_split(wine, test_size=360,train_size=959, random_state=1)
wine_test["quality"].value_counts()
wine_train["quality"].value_counts()
wine
wine["quality"].value_counts()
wine.describe(include='all')
wine["quality"]=((wine["quality"]-wine["quality"].min())/(wine["quality"].max()-wine["quality"].min()))*20
wine["quality"].value_counts()
wine.isnull().sum()
wine.dropna(inplace=True)
print(wine)

View File

@ -1,49 +1,54 @@
from tensorflow.keras.models import Sequential, load_model from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Dense
from sklearn.metrics import accuracy_score, classification_report from sklearn.metrics import accuracy_score, classification_report
import pandas as pd import pandas as pd
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
import wget import wget
import numpy as np import numpy as np
import os
url = 'https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv'
wget.download(url, out='winequality-red.csv', bar=None) url = 'https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv'
wget.download(url, out='winequality-red.csv', bar=None)
wine=pd.read_csv('winequality-red.csv')
wine wine=pd.read_csv('winequality-red.csv')
wine
y = wine.quality
y.head() y = wine.quality
y.head()
x = wine.drop(['quality'], axis= 1)
x.head() x = wine.drop(['quality'], axis= 1)
x.head()
x=((x-x.min())/(x.max()-x.min())) #Normalizacja
x=((x-x.min())/(x.max()-x.min())) #Normalizacja
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
def regression_model():
model = Sequential() def regression_model():
model.add(Dense(32,activation = "relu", input_shape = (x_train.shape[1],))) model = Sequential()
model.add(Dense(64,activation = "relu")) model.add(Dense(32,activation = "relu", input_shape = (x_train.shape[1],)))
model.add(Dense(1,activation = "relu")) model.add(Dense(64,activation = "relu"))
model.add(Dense(1,activation = "relu"))
model.compile(optimizer = "adam", loss = "mean_squared_error")
return model model.compile(optimizer = "adam", loss = "mean_squared_error")
return model
model = regression_model()
model.fit(x_train, y_train, epochs = 600, verbose = 1) model = regression_model()
model.fit(x_train, y_train, epochs = 600, verbose = 1)
y_pred = model.predict(x_test)
y_pred = model.predict(x_test)
y_pred[:5]
y_pred = np.around(y_pred, decimals=0)
y_pred = np.around(y_pred, decimals=0)
y_pred[:5] dirpath = os.getcwd()
print("dirpath = ", dirpath, "\n")
pd.DataFrame(y_pred).to_csv("preds.csv")
output_path = os.path.join(dirpath,'output.csv')
print(accuracy_score(y_test, y_pred)) print(output_path,"\n")
print(classification_report(y_test,y_pred)) pd.DataFrame(y_pred).to_csv(output_path)
print(accuracy_score(y_test, y_pred))
print(classification_report(y_test,y_pred))

View File

@ -1,47 +0,0 @@
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense
from sklearn.metrics import accuracy_score, classification_report
import pandas as pd
from sklearn.model_selection import train_test_split
import wget
import numpy as np
url = 'https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv'
wget.download(url, out='winequality-red.csv', bar=None)
wine=pd.read_csv('winequality-red.csv')
wine
y = wine.quality
y.head()
x = wine.drop(['quality'], axis= 1)
x.head()
x=((x-x.min())/(x.max()-x.min())) #Normalizacja
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
def regression_model():
model = Sequential()
model.add(Dense(32,activation = "relu", input_shape = (x_train.shape[1],)))
model.add(Dense(64,activation = "relu"))
model.add(Dense(1,activation = "relu"))
model.compile(optimizer = "adam", loss = "mean_squared_error")
return model
model = regression_model()
model.fit(x_train, y_train, epochs = 600, verbose = 1)
y_pred = model.predict(x_test)
y_pred[:5]
y_pred = np.around(y_pred, decimals=0)
y_pred[:5]
print(accuracy_score(y_test, y_pred))
print(classification_report(y_test,y_pred))

View File

@ -1,28 +0,0 @@
# Nasz obraz będzie dzidziczył z obrazu Ubuntu w wersji latest
FROM ubuntu:latest
# Instalujemy niezbędne zależności. Zwróć uwagę na flagę "-y" (assume yes)
RUN apt update && apt install -y git
RUN apt install -y python3-pip
RUN apt install -y curl
RUN pip3 install --user wget
RUN pip3 install --user kaggle
RUN pip3 install --user seaborn
RUN pip3 install --user sklearn
RUN pip3 install --user pandas
RUN pip3 install --user numpy
RUN pip3 install --user matplotlib
RUN pip3 install --user tensorflow
RUN pip3 install --user sacred
# Stwórzmy w kontenerze (jeśli nie istnieje) katalog /app i przejdźmy do niego (wszystkie kolejne polecenia RUN, CMD, ENTRYPOINT, COPY i ADD będą w nim wykonywane)
WORKDIR /app
# Skopiujmy nasz skrypt do katalogu /app w kontenerze
COPY ./test.sh ./
COPY ./Python_file.py ./
COPY ./Zadanie_5_Docker.py ./
# Domyślne polecenie, które zostanie uruchomione w kontenerze po jego starcie
CMD ./test.sh

View File

@ -1,31 +0,0 @@
import wget
url = 'https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv'
wget.download(url, out='winequality-red.csv', bar=None)
import pandas as pd
wine=pd.read_csv('winequality-red.csv')
wine
from sklearn.model_selection import train_test_split
wine_train, wine_test = train_test_split(wine, test_size=360,train_size=959, random_state=1)
wine_test["quality"].value_counts()
wine_train["quality"].value_counts()
wine
wine["quality"].value_counts()
wine.describe(include='all')
wine["quality"]=((wine["quality"]-wine["quality"].min())/(wine["quality"].max()-wine["quality"].min()))*20
wine["quality"].value_counts()
wine.isnull().sum()
wine.dropna(inplace=True)
print(wine)

View File

@ -1,2 +0,0 @@
#Uruchomienie skryptu i wyświetlenie 10 pierwszych wierszy wyjściowej tabeli
python3 Python_file.py