dvc jenkins

This commit is contained in:
Dominik Strzako 2021-06-08 00:28:23 +02:00
parent efc72c72ea
commit b77042df83
6 changed files with 148 additions and 0 deletions

3
.gitignore vendored
View File

@ -1 +1,4 @@
/winequality-red.csv
/10_x.csv
/10_y.csv
/sample.txt

17
Jenkinsfile_dvc Normal file
View File

@ -0,0 +1,17 @@
pipeline {
agent {docker { image 'snowycocoon/ium_434788:3'}}
stages {
stage('Test') {
steps {
sh 'echo hi'
}
}
}
post {
success {
mail body: 'SUCCESS',
subject: 's434788 DVC',
to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
}
}
}

32
Zadanie_10_Split.py Normal file
View File

@ -0,0 +1,32 @@
from sklearn.preprocessing import StandardScaler, LabelEncoder
import numpy as np
import pandas as pd
wine=pd.read_csv('winequality-red.csv')
y = wine['quality']
x = wine.drop('quality', axis=1)
citricacid = x['fixed acidity'] * x['citric acid']
citric_acidity = pd.DataFrame(citricacid, columns=['citric_accidity'])
density_acidity = x['fixed acidity'] * x['density']
density_acidity = pd.DataFrame(density_acidity, columns=['density_acidity'])
x = wine.join(citric_acidity).join(density_acidity)
bins = (2, 5, 8)
labels = ['bad', 'nice']
y = pd.cut(y, bins = bins, labels = labels)
enc = LabelEncoder()
yenc = enc.fit_transform(y)
scale = StandardScaler()
scaled_x = scale.fit_transform(x)
df_x = pd.DataFrame(scaled_x)
df_y = pd.DataFrame(yenc)
df_x.to_csv(r'10_x.csv', index=False)
df_y.to_csv(r'10_y.csv', index=False)

47
Zadanie_10_Train.py Normal file
View File

@ -0,0 +1,47 @@
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
import numpy as np
import pandas as pd
x=pd.read_csv('10_x.csv')
y=pd.read_csv('10_y.csv')
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
NeuralModel = Sequential([
Dense(128, activation='relu', input_shape=(14,)),
Dense(32, activation='relu'),
Dense(64, activation='relu'),
Dense(64, activation='relu'),
Dense(64, activation='relu'),
Dense(1, activation='sigmoid')
])
#https://keras.io/api/losses/
#https://keras.io/api/optimizers/
#https://keras.io/api/metrics/
opt = Adam(lr=0.0003)
NeuralModel.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy','AUC'])
NeuralModel.fit(x_train, y_train, batch_size= 16, epochs = 16) #verbose = 1
y_pred = NeuralModel.predict(x_test)
y_pred = np.around(y_pred, decimals=0)
results = accuracy_score(y_test,y_pred)
text_file = open("sample.txt", "w")
n = text_file.write(f"accuracy: {results}")
text_file.close()
print(f"accuracy: {results}")
# Accuracy wynosi 1 z powodu banalnego podziału na 2 klasy jakosci Wina: "bad" i "nice".

32
dvc.lock Normal file
View File

@ -0,0 +1,32 @@
split_model:
cmd: python3 Zadanie_10_Split.py
deps:
- path: Zadanie_10_Split.py
md5: 2d95e0e1afc997823fc613788e2fbe16
size: 864
- path: winequality-red.csv
md5: 6a883fd98624e18c0b7ce251f4fab4fb
size: 100951
outs:
- path: 10_x.csv
md5: bcfb4f34de770b22e1065b9b2c133e16
size: 443481
- path: 10_y.csv
md5: 7d1dc704bd48248f8a51c771674e2ad8
size: 4800
train_model:
cmd: python3 Zadanie_10_Train.py
deps:
- path: 10_x.csv
md5: bcfb4f34de770b22e1065b9b2c133e16
size: 443481
- path: 10_y.csv
md5: 7d1dc704bd48248f8a51c771674e2ad8
size: 4800
- path: Zadanie_10_Train.py
md5: 0d0aff9e327292b07cb5110c576f7efe
size: 1541
outs:
- path: sample.txt
md5: 98937548d721445b2095fb13deb756d7
size: 13

17
dvc.yaml Normal file
View File

@ -0,0 +1,17 @@
stages:
split_model:
cmd: python3 Zadanie_10_Split.py
deps:
- winequality-red.csv
- Zadanie_10_Split.py
outs:
- 10_x.csv
- 10_y.csv
train_model:
cmd: python3 Zadanie_10_Train.py
deps:
- Zadanie_10_Train.py
- 10_x.csv
- 10_y.csv
outs:
- sample.txt