Zadanie Domowe Zajęcia 5 (Jupyter + Docker)

This commit is contained in:
Dominik Strzako 2021-04-17 18:33:36 +02:00
parent 6939565f78
commit c5356d322b
8 changed files with 2428 additions and 2 deletions

View File

@ -10,7 +10,10 @@ RUN pip3 install --user kaggle
RUN pip3 install --user seaborn RUN pip3 install --user seaborn
RUN pip3 install --user sklearn RUN pip3 install --user sklearn
RUN pip3 install --user pandas RUN pip3 install --user pandas
RUN pip3 install --user numpy
RUN pip3 install --user matplotlib RUN pip3 install --user matplotlib
RUN pip3 install --user tensorflow
# Stwórzmy w kontenerze (jeśli nie istnieje) katalog /app i przejdźmy do niego (wszystkie kolejne polecenia RUN, CMD, ENTRYPOINT, COPY i ADD będą w nim wykonywane) # Stwórzmy w kontenerze (jeśli nie istnieje) katalog /app i przejdźmy do niego (wszystkie kolejne polecenia RUN, CMD, ENTRYPOINT, COPY i ADD będą w nim wykonywane)
WORKDIR /app WORKDIR /app
@ -18,6 +21,7 @@ WORKDIR /app
# Skopiujmy nasz skrypt do katalogu /app w kontenerze # Skopiujmy nasz skrypt do katalogu /app w kontenerze
COPY ./test.sh ./ COPY ./test.sh ./
COPY ./Python_file.py ./ COPY ./Python_file.py ./
COPY ./Zadanie_5_Docker.py ./
# Domyślne polecenie, które zostanie uruchomione w kontenerze po jego starcie # Domyślne polecenie, które zostanie uruchomione w kontenerze po jego starcie
CMD ./test.sh CMD ./test.sh

File diff suppressed because one or more lines are too long

47
Zadanie_5_Docker.py Normal file
View File

@ -0,0 +1,47 @@
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense
from sklearn.metrics import accuracy_score, classification_report
import pandas as pd
from sklearn.model_selection import train_test_split
import wget
import numpy as np
url = 'https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv'
wget.download(url, out='winequality-red.csv', bar=None)
wine=pd.read_csv('winequality-red.csv')
wine
y = wine.quality
y.head()
x = wine.drop(['quality'], axis= 1)
x.head()
x=((x-x.min())/(x.max()-x.min())) #Normalizacja
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
def regression_model():
model = Sequential()
model.add(Dense(32,activation = "relu", input_shape = (x_train.shape[1],)))
model.add(Dense(64,activation = "relu"))
model.add(Dense(1,activation = "relu"))
model.compile(optimizer = "adam", loss = "mean_squared_error")
return model
model = regression_model()
model.fit(x_train, y_train, epochs = 600, verbose = 1)
y_pred = model.predict(x_test)
y_pred[:5]
y_pred = np.around(y_pred, decimals=0)
y_pred[:5]
print(accuracy_score(y_test, y_pred))
print(classification_report(y_test,y_pred))

View File

@ -10,7 +10,10 @@ RUN pip3 install --user kaggle
RUN pip3 install --user seaborn RUN pip3 install --user seaborn
RUN pip3 install --user sklearn RUN pip3 install --user sklearn
RUN pip3 install --user pandas RUN pip3 install --user pandas
RUN pip3 install --user numpy
RUN pip3 install --user matplotlib RUN pip3 install --user matplotlib
RUN pip3 install --user tensorflow
# Stwórzmy w kontenerze (jeśli nie istnieje) katalog /app i przejdźmy do niego (wszystkie kolejne polecenia RUN, CMD, ENTRYPOINT, COPY i ADD będą w nim wykonywane) # Stwórzmy w kontenerze (jeśli nie istnieje) katalog /app i przejdźmy do niego (wszystkie kolejne polecenia RUN, CMD, ENTRYPOINT, COPY i ADD będą w nim wykonywane)
WORKDIR /app WORKDIR /app
@ -18,6 +21,7 @@ WORKDIR /app
# Skopiujmy nasz skrypt do katalogu /app w kontenerze # Skopiujmy nasz skrypt do katalogu /app w kontenerze
COPY ./test.sh ./ COPY ./test.sh ./
COPY ./Python_file.py ./ COPY ./Python_file.py ./
COPY ./Zadanie_5_Docker.py ./
# Domyślne polecenie, które zostanie uruchomione w kontenerze po jego starcie # Domyślne polecenie, które zostanie uruchomione w kontenerze po jego starcie
CMD ./test.sh CMD ./test.sh

View File

@ -0,0 +1,47 @@
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense
from sklearn.metrics import accuracy_score, classification_report
import pandas as pd
from sklearn.model_selection import train_test_split
import wget
import numpy as np
url = 'https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv'
wget.download(url, out='winequality-red.csv', bar=None)
wine=pd.read_csv('winequality-red.csv')
wine
y = wine.quality
y.head()
x = wine.drop(['quality'], axis= 1)
x.head()
x=((x-x.min())/(x.max()-x.min())) #Normalizacja
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=0.2,train_size=0.8, random_state=21)
def regression_model():
model = Sequential()
model.add(Dense(32,activation = "relu", input_shape = (x_train.shape[1],)))
model.add(Dense(64,activation = "relu"))
model.add(Dense(1,activation = "relu"))
model.compile(optimizer = "adam", loss = "mean_squared_error")
return model
model = regression_model()
model.fit(x_train, y_train, epochs = 600, verbose = 1)
y_pred = model.predict(x_test)
y_pred[:5]
y_pred = np.around(y_pred, decimals=0)
y_pred[:5]
print(accuracy_score(y_test, y_pred))
print(classification_report(y_test,y_pred))

View File

@ -1,2 +1,2 @@
#Uruchomienie skryptu i wyświetlenie 10 pierwszych wierszy wyjściowej tabeli #Uruchomienie skryptu i wyświetlenie 10 pierwszych wierszy wyjściowej tabeli
python3 Python_file.py python3 Zadanie_5_Docker.py

2
zad8/Jenkinsfile vendored
View File

@ -1,6 +1,6 @@
pipeline { pipeline {
agent { agent {
docker { image 'snowycocoon/ium_434788:1' } docker { image 'snowycocoon/ium_434788:2' }
} }
stages { stages {
stage('Test') { stage('Test') {