diff --git a/IUM_1_434788 .ipynb b/IUM_1_434788 .ipynb
deleted file mode 100644
index a6d4e4f..0000000
--- a/IUM_1_434788 .ipynb
+++ /dev/null
@@ -1,2654 +0,0 @@
-{
- "nbformat": 4,
- "nbformat_minor": 0,
- "metadata": {
- "colab": {
- "name": "IUM_1_434788.ipynb",
- "provenance": [],
- "collapsed_sections": [],
- "toc_visible": true
- },
- "kernelspec": {
- "name": "python3",
- "display_name": "Python 3"
- }
- },
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "shaFKPEixPn4"
- },
- "source": [
- "# 1. Pobranie zbioru danych z Repozytorium"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "-03GDjWtxD7W",
- "outputId": "4a000204-8cfd-43f2-a83d-a025bde4fa2c"
- },
- "source": [
- "!curl -OL https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv"
- ],
- "execution_count": 1,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- " % Total % Received % Xferd Average Speed Time Time Time Current\n",
- " Dload Upload Total Spent Left Speed\n",
- "100 98k 0 98k 0 0 60997 0 --:--:-- 0:00:01 --:--:-- 60997\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 419
- },
- "id": "sAUNi0ylxWUm",
- "outputId": "52b00ad4-b6e3-4d40-956d-242b29f90db1"
- },
- "source": [
- "import pandas as pd\n",
- "wine=pd.read_csv('winequality-red.csv')\n",
- "wine"
- ],
- "execution_count": 2,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " fixed acidity | \n",
- " volatile acidity | \n",
- " citric acid | \n",
- " residual sugar | \n",
- " chlorides | \n",
- " free sulfur dioxide | \n",
- " total sulfur dioxide | \n",
- " density | \n",
- " pH | \n",
- " sulphates | \n",
- " alcohol | \n",
- " quality | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 7.4 | \n",
- " 0.700 | \n",
- " 0.00 | \n",
- " 1.9 | \n",
- " 0.076 | \n",
- " 11.0 | \n",
- " 34.0 | \n",
- " 0.99780 | \n",
- " 3.51 | \n",
- " 0.56 | \n",
- " 9.4 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 7.8 | \n",
- " 0.880 | \n",
- " 0.00 | \n",
- " 2.6 | \n",
- " 0.098 | \n",
- " 25.0 | \n",
- " 67.0 | \n",
- " 0.99680 | \n",
- " 3.20 | \n",
- " 0.68 | \n",
- " 9.8 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 7.8 | \n",
- " 0.760 | \n",
- " 0.04 | \n",
- " 2.3 | \n",
- " 0.092 | \n",
- " 15.0 | \n",
- " 54.0 | \n",
- " 0.99700 | \n",
- " 3.26 | \n",
- " 0.65 | \n",
- " 9.8 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 11.2 | \n",
- " 0.280 | \n",
- " 0.56 | \n",
- " 1.9 | \n",
- " 0.075 | \n",
- " 17.0 | \n",
- " 60.0 | \n",
- " 0.99800 | \n",
- " 3.16 | \n",
- " 0.58 | \n",
- " 9.8 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 7.4 | \n",
- " 0.700 | \n",
- " 0.00 | \n",
- " 1.9 | \n",
- " 0.076 | \n",
- " 11.0 | \n",
- " 34.0 | \n",
- " 0.99780 | \n",
- " 3.51 | \n",
- " 0.56 | \n",
- " 9.4 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 1594 | \n",
- " 6.2 | \n",
- " 0.600 | \n",
- " 0.08 | \n",
- " 2.0 | \n",
- " 0.090 | \n",
- " 32.0 | \n",
- " 44.0 | \n",
- " 0.99490 | \n",
- " 3.45 | \n",
- " 0.58 | \n",
- " 10.5 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 1595 | \n",
- " 5.9 | \n",
- " 0.550 | \n",
- " 0.10 | \n",
- " 2.2 | \n",
- " 0.062 | \n",
- " 39.0 | \n",
- " 51.0 | \n",
- " 0.99512 | \n",
- " 3.52 | \n",
- " 0.76 | \n",
- " 11.2 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 1596 | \n",
- " 6.3 | \n",
- " 0.510 | \n",
- " 0.13 | \n",
- " 2.3 | \n",
- " 0.076 | \n",
- " 29.0 | \n",
- " 40.0 | \n",
- " 0.99574 | \n",
- " 3.42 | \n",
- " 0.75 | \n",
- " 11.0 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 1597 | \n",
- " 5.9 | \n",
- " 0.645 | \n",
- " 0.12 | \n",
- " 2.0 | \n",
- " 0.075 | \n",
- " 32.0 | \n",
- " 44.0 | \n",
- " 0.99547 | \n",
- " 3.57 | \n",
- " 0.71 | \n",
- " 10.2 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 1598 | \n",
- " 6.0 | \n",
- " 0.310 | \n",
- " 0.47 | \n",
- " 3.6 | \n",
- " 0.067 | \n",
- " 18.0 | \n",
- " 42.0 | \n",
- " 0.99549 | \n",
- " 3.39 | \n",
- " 0.66 | \n",
- " 11.0 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- "
\n",
- "
1599 rows × 12 columns
\n",
- "
"
- ],
- "text/plain": [
- " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n",
- "0 7.4 0.700 0.00 ... 0.56 9.4 5\n",
- "1 7.8 0.880 0.00 ... 0.68 9.8 5\n",
- "2 7.8 0.760 0.04 ... 0.65 9.8 5\n",
- "3 11.2 0.280 0.56 ... 0.58 9.8 6\n",
- "4 7.4 0.700 0.00 ... 0.56 9.4 5\n",
- "... ... ... ... ... ... ... ...\n",
- "1594 6.2 0.600 0.08 ... 0.58 10.5 5\n",
- "1595 5.9 0.550 0.10 ... 0.76 11.2 6\n",
- "1596 6.3 0.510 0.13 ... 0.75 11.0 6\n",
- "1597 5.9 0.645 0.12 ... 0.71 10.2 5\n",
- "1598 6.0 0.310 0.47 ... 0.66 11.0 6\n",
- "\n",
- "[1599 rows x 12 columns]"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 2
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "4H-i6DJlxduP"
- },
- "source": [
- "# 2. Podział na zbiory test/train przy pomocy SciKit"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "X88VMhb0x3gJ"
- },
- "source": [
- "from sklearn.model_selection import train_test_split\n",
- "\n",
- "wine_train, wine_test = train_test_split(wine, test_size=360,train_size=959, random_state=1)"
- ],
- "execution_count": 3,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "OzjEfgNOyAWs",
- "outputId": "39aeff13-72b4-4a88-fc0d-97a8456fc86b"
- },
- "source": [
- "wine_test[\"quality\"].value_counts()"
- ],
- "execution_count": 4,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "5 155\n",
- "6 149\n",
- "7 37\n",
- "4 16\n",
- "8 2\n",
- "3 1\n",
- "Name: quality, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 4
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "SpQZIuSxyAd0",
- "outputId": "76cfa3e6-18ff-460e-f954-fc3ad9e8d3ae"
- },
- "source": [
- "wine_train[\"quality\"].value_counts()"
- ],
- "execution_count": 5,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "5 400\n",
- "6 388\n",
- "7 125\n",
- "4 30\n",
- "8 11\n",
- "3 5\n",
- "Name: quality, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 5
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "wAq8KmNdyNOm"
- },
- "source": [
- "# 3. Statystyki dla zbior"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "Wcq9YSTfXbs1"
- },
- "source": [
- "from matplotlib import pyplot as plt\n",
- "import seaborn as sns"
- ],
- "execution_count": 6,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "EjDFpgdPy_of"
- },
- "source": [
- "## 3.1. Zbiór Train"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 419
- },
- "id": "SscUak3AydG0",
- "outputId": "71c407d9-388a-4528-cbf6-f34a8aa23c23"
- },
- "source": [
- "wine_train"
- ],
- "execution_count": 7,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " fixed acidity | \n",
- " volatile acidity | \n",
- " citric acid | \n",
- " residual sugar | \n",
- " chlorides | \n",
- " free sulfur dioxide | \n",
- " total sulfur dioxide | \n",
- " density | \n",
- " pH | \n",
- " sulphates | \n",
- " alcohol | \n",
- " quality | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 1589 | \n",
- " 6.6 | \n",
- " 0.725 | \n",
- " 0.20 | \n",
- " 7.8 | \n",
- " 0.073 | \n",
- " 29.0 | \n",
- " 79.0 | \n",
- " 0.99770 | \n",
- " 3.29 | \n",
- " 0.54 | \n",
- " 9.2 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 854 | \n",
- " 9.3 | \n",
- " 0.360 | \n",
- " 0.39 | \n",
- " 1.5 | \n",
- " 0.080 | \n",
- " 41.0 | \n",
- " 55.0 | \n",
- " 0.99652 | \n",
- " 3.47 | \n",
- " 0.73 | \n",
- " 10.9 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 83 | \n",
- " 7.3 | \n",
- " 0.670 | \n",
- " 0.26 | \n",
- " 1.8 | \n",
- " 0.401 | \n",
- " 16.0 | \n",
- " 51.0 | \n",
- " 0.99690 | \n",
- " 3.16 | \n",
- " 1.14 | \n",
- " 9.4 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 1106 | \n",
- " 8.2 | \n",
- " 0.230 | \n",
- " 0.42 | \n",
- " 1.9 | \n",
- " 0.069 | \n",
- " 9.0 | \n",
- " 17.0 | \n",
- " 0.99376 | \n",
- " 3.21 | \n",
- " 0.54 | \n",
- " 12.3 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 650 | \n",
- " 10.7 | \n",
- " 0.430 | \n",
- " 0.39 | \n",
- " 2.2 | \n",
- " 0.106 | \n",
- " 8.0 | \n",
- " 32.0 | \n",
- " 0.99860 | \n",
- " 2.89 | \n",
- " 0.50 | \n",
- " 9.6 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 526 | \n",
- " 7.3 | \n",
- " 0.365 | \n",
- " 0.49 | \n",
- " 2.5 | \n",
- " 0.088 | \n",
- " 39.0 | \n",
- " 106.0 | \n",
- " 0.99660 | \n",
- " 3.36 | \n",
- " 0.78 | \n",
- " 11.0 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 583 | \n",
- " 12.0 | \n",
- " 0.280 | \n",
- " 0.49 | \n",
- " 1.9 | \n",
- " 0.074 | \n",
- " 10.0 | \n",
- " 21.0 | \n",
- " 0.99760 | \n",
- " 2.98 | \n",
- " 0.66 | \n",
- " 9.9 | \n",
- " 7 | \n",
- "
\n",
- " \n",
- " 975 | \n",
- " 7.2 | \n",
- " 0.410 | \n",
- " 0.30 | \n",
- " 2.1 | \n",
- " 0.083 | \n",
- " 35.0 | \n",
- " 72.0 | \n",
- " 0.99700 | \n",
- " 3.44 | \n",
- " 0.52 | \n",
- " 9.4 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 566 | \n",
- " 8.7 | \n",
- " 0.700 | \n",
- " 0.24 | \n",
- " 2.5 | \n",
- " 0.226 | \n",
- " 5.0 | \n",
- " 15.0 | \n",
- " 0.99910 | \n",
- " 3.32 | \n",
- " 0.60 | \n",
- " 9.0 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 1232 | \n",
- " 7.6 | \n",
- " 0.430 | \n",
- " 0.29 | \n",
- " 2.1 | \n",
- " 0.075 | \n",
- " 19.0 | \n",
- " 66.0 | \n",
- " 0.99718 | \n",
- " 3.40 | \n",
- " 0.64 | \n",
- " 9.5 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- "
\n",
- "
959 rows × 12 columns
\n",
- "
"
- ],
- "text/plain": [
- " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n",
- "1589 6.6 0.725 0.20 ... 0.54 9.2 5\n",
- "854 9.3 0.360 0.39 ... 0.73 10.9 6\n",
- "83 7.3 0.670 0.26 ... 1.14 9.4 5\n",
- "1106 8.2 0.230 0.42 ... 0.54 12.3 6\n",
- "650 10.7 0.430 0.39 ... 0.50 9.6 5\n",
- "... ... ... ... ... ... ... ...\n",
- "526 7.3 0.365 0.49 ... 0.78 11.0 5\n",
- "583 12.0 0.280 0.49 ... 0.66 9.9 7\n",
- "975 7.2 0.410 0.30 ... 0.52 9.4 5\n",
- "566 8.7 0.700 0.24 ... 0.60 9.0 6\n",
- "1232 7.6 0.430 0.29 ... 0.64 9.5 5\n",
- "\n",
- "[959 rows x 12 columns]"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 7
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "hZAn8j4byMF2",
- "outputId": "f0b9e807-8058-4c00-8276-5bbfc50efea8"
- },
- "source": [
- "wine_train[\"quality\"].value_counts()"
- ],
- "execution_count": 8,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "5 400\n",
- "6 388\n",
- "7 125\n",
- "4 30\n",
- "8 11\n",
- "3 5\n",
- "Name: quality, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 8
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 297
- },
- "id": "EOEuj8sRyL8v",
- "outputId": "0e2a980b-5a28-4ea0-e1f5-f33d93499525"
- },
- "source": [
- "wine_train.describe(include='all')"
- ],
- "execution_count": 9,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " fixed acidity | \n",
- " volatile acidity | \n",
- " citric acid | \n",
- " residual sugar | \n",
- " chlorides | \n",
- " free sulfur dioxide | \n",
- " total sulfur dioxide | \n",
- " density | \n",
- " pH | \n",
- " sulphates | \n",
- " alcohol | \n",
- " quality | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " count | \n",
- " 959.000000 | \n",
- " 959.000000 | \n",
- " 959.000000 | \n",
- " 959.000000 | \n",
- " 959.000000 | \n",
- " 959.000000 | \n",
- " 959.000000 | \n",
- " 959.000000 | \n",
- " 959.00000 | \n",
- " 959.000000 | \n",
- " 959.000000 | \n",
- " 959.000000 | \n",
- "
\n",
- " \n",
- " mean | \n",
- " 8.329093 | \n",
- " 0.526809 | \n",
- " 0.269864 | \n",
- " 2.493743 | \n",
- " 0.088230 | \n",
- " 15.883733 | \n",
- " 45.738790 | \n",
- " 0.996736 | \n",
- " 3.31048 | \n",
- " 0.661481 | \n",
- " 10.433160 | \n",
- " 5.657977 | \n",
- "
\n",
- " \n",
- " std | \n",
- " 1.808394 | \n",
- " 0.175221 | \n",
- " 0.198377 | \n",
- " 1.262329 | \n",
- " 0.050555 | \n",
- " 10.485739 | \n",
- " 31.897095 | \n",
- " 0.001925 | \n",
- " 0.15462 | \n",
- " 0.171639 | \n",
- " 1.084349 | \n",
- " 0.805654 | \n",
- "
\n",
- " \n",
- " min | \n",
- " 4.600000 | \n",
- " 0.120000 | \n",
- " 0.000000 | \n",
- " 0.900000 | \n",
- " 0.012000 | \n",
- " 1.000000 | \n",
- " 6.000000 | \n",
- " 0.990070 | \n",
- " 2.74000 | \n",
- " 0.370000 | \n",
- " 8.400000 | \n",
- " 3.000000 | \n",
- "
\n",
- " \n",
- " 25% | \n",
- " 7.100000 | \n",
- " 0.400000 | \n",
- " 0.090000 | \n",
- " 1.900000 | \n",
- " 0.070000 | \n",
- " 7.000000 | \n",
- " 22.000000 | \n",
- " 0.995540 | \n",
- " 3.21000 | \n",
- " 0.550000 | \n",
- " 9.500000 | \n",
- " 5.000000 | \n",
- "
\n",
- " \n",
- " 50% | \n",
- " 7.900000 | \n",
- " 0.520000 | \n",
- " 0.250000 | \n",
- " 2.200000 | \n",
- " 0.079000 | \n",
- " 14.000000 | \n",
- " 37.000000 | \n",
- " 0.996770 | \n",
- " 3.31000 | \n",
- " 0.620000 | \n",
- " 10.100000 | \n",
- " 6.000000 | \n",
- "
\n",
- " \n",
- " 75% | \n",
- " 9.300000 | \n",
- " 0.635000 | \n",
- " 0.430000 | \n",
- " 2.600000 | \n",
- " 0.090000 | \n",
- " 22.000000 | \n",
- " 61.000000 | \n",
- " 0.997870 | \n",
- " 3.40000 | \n",
- " 0.730000 | \n",
- " 11.100000 | \n",
- " 6.000000 | \n",
- "
\n",
- " \n",
- " max | \n",
- " 15.900000 | \n",
- " 1.330000 | \n",
- " 1.000000 | \n",
- " 15.400000 | \n",
- " 0.610000 | \n",
- " 72.000000 | \n",
- " 278.000000 | \n",
- " 1.003690 | \n",
- " 4.01000 | \n",
- " 2.000000 | \n",
- " 14.900000 | \n",
- " 8.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " fixed acidity volatile acidity ... alcohol quality\n",
- "count 959.000000 959.000000 ... 959.000000 959.000000\n",
- "mean 8.329093 0.526809 ... 10.433160 5.657977\n",
- "std 1.808394 0.175221 ... 1.084349 0.805654\n",
- "min 4.600000 0.120000 ... 8.400000 3.000000\n",
- "25% 7.100000 0.400000 ... 9.500000 5.000000\n",
- "50% 7.900000 0.520000 ... 10.100000 6.000000\n",
- "75% 9.300000 0.635000 ... 11.100000 6.000000\n",
- "max 15.900000 1.330000 ... 14.900000 8.000000\n",
- "\n",
- "[8 rows x 12 columns]"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 9
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 405
- },
- "id": "HbsfwCL7XpNe",
- "outputId": "8bfc8dbc-d2d8-447b-991c-617d8196a7de"
- },
- "source": [
- "fig = plt.figure(figsize = (10,6))\n",
- "sns.barplot(x = 'quality', y = 'volatile acidity', data = wine)"
- ],
- "execution_count": 10,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 10
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAFzCAYAAAB2A95GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAYxklEQVR4nO3de5BmZ10n8O8vM8RANlx0Zh1Ngsm6ATcqAo4RjQIloAlisougiQso5RLdJcpFmYJiCwXdrXWA9Yq6WRTxRgxZ0OAOhlVuihIzgXANWGMgZEbaTEDuYEjy2z/6Hex0Znp6kjn99Lz9+VR1ve855+nzfvNWKvn2c27V3QEAYG0dNzoAAMBGpIQBAAyghAEADKCEAQAMoIQBAAyghAEADLB5dIAjtWXLlj7ttNNGxwAAOKxrrrnm5u7eerBtx1wJO+2007J79+7RMQAADquqbjjUNocjAQAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABjjmHuB9rNqxY0cWFhaybdu27Ny5c3QcAGAwJWyNLCwsZN++faNjAADrhMORAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAA0xWwqrqt6vqpqp67yG2V1X9SlXtqap3V9VDp8oCALDeTDkT9jtJzllh+7lJzpj9XJTkNybMAgCwrkxWwrr7rUk+vsKQ85P8bi96e5L7VtVXTZUHAGA9GXlO2MlJblyyvHe27k6q6qKq2l1Vu/fv378m4QAApnRMnJjf3Zd09/bu3r5169bRcQAA7raRJWxfklOXLJ8yWwcAMPdGlrArkjxldpXkw5J8srs/OjAPAMCa2TzVjqvqVUkemWRLVe1N8jNJ7pEk3f2bSXYleWySPUk+l+SpU2UBAFhvJith3X3hYbZ3kqdP9fkAAOvZMXFiPgDAvFHCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAbYPDrAFL75Ob87OsKdnHTzp7MpyUdu/vS6ynfNi58yOgIAbEhmwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGmLSEVdU5VfXBqtpTVc89yPb7V9WbquqdVfXuqnrslHkAANaLyUpYVW1K8rIk5yY5M8mFVXXmsmH/Ncll3f2QJBck+fWp8gAArCdTzoSdlWRPd1/f3bckuTTJ+cvGdJJ7z97fJ8k/TJgHAGDd2Dzhvk9OcuOS5b1JvnXZmJ9N8oaq+okkJyZ59IR5AADWjdEn5l+Y5He6+5Qkj03ye1V1p0xVdVFV7a6q3fv371/zkAAAR9uUJWxfklOXLJ8yW7fUjya5LEm6+2+SnJBky/Iddfcl3b29u7dv3bp1orgAAGtnyhJ2dZIzqur0qjo+iyfeX7FszEeSPCpJqurfZbGEmeoCAObeZCWsu29NcnGSK5Ncl8WrIN9XVS+qqvNmw34qydOq6l1JXpXkR7q7p8oEALBeTHlifrp7V5Jdy9a9YMn79yc5e8oMAADr0egT8wEANiQlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYIBJ7xMGI+3YsSMLCwvZtm1bdu7cOToOANyBEsbcWlhYyL59yx9XCgDrg8ORAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADbB4dgPnwkRd94+gId3Lrx788yebc+vEb1lW++7/gPaMjALAOKGFr5PbjT7zDKwCwsSlha+SzZ3z36AgAwDpy2HPCquqaqnp6Vd1vLQIBAGwEqzkx/weTfHWSq6vq0qr6nqqqiXMBAMy1w5aw7t7T3c9P8oAkf5jkt5PcUFUvrKovnzogAMA8WtUtKqrqQUlemuTFSf5Pkicm+VSSN04XDQBgfh32xPyquibJJ5L8VpLndvc/zzZdVVVnTxkOAGBerebqyCd29/VLV1TV6d39oe5+/ES5AADm2moOR16+ynUAAKzSIWfCqurrknx9kvtU1dIZr3snOWHqYAAA82ylw5EPTPK4JPdN8n1L1n86ydOmDAUAMO8OWcK6+0+S/ElVfVt3/80aZgIAmHsrHY7c0d07k/xQVV24fHt3/+SkyQAA5thKhyOvm73uXosgAAAbyUqHI183e33l2sUBANgYVjoc+bokfajt3X3eJIkAADaAlQ5HvmT2+vgk25L8/mz5wiT/OGUoAIB5t9LhyLckSVW9tLu3L9n0uqpynhgAwN2wmjvmn1hV/+bAQlWdnuTE6SLB0bHlhNvzlfe8NVtOuH10FAC4k9U8O/JZSd5cVdcnqSRfk+THJk0FR8FPP+gToyMAwCEdtoR1959V1RlJvm626gPd/c/TxgIAmG8rXR35Xd39xmXPjUySr62qdPdrJs4GADC3VpoJe0SSN+aOz408oJMoYQAAd9FKV0f+zOz1qXd151V1TpJfTrIpycu7+38cZMwPJPnZLBa7d3X3D93VzwMAOFYc9urIqvrvVXXfJcv3q6qfX8XvbUrysiTnJjkzyYVVdeayMWckeV6Ss7v765M88wjzAwAck1Zzi4pzu/tLl5l19z8leewqfu+sJHu6+/ruviXJpUnOXzbmaUleNttnuvum1cUGADi2raaEbaqqLzuwUFX3TPJlK4w/4OQkNy5Z3jtbt9QDkjygqt5WVW+fHb4EAJh7q7lP2B8k+YuqesVs+alJjtZDvTcnOSPJI5OckuStVfWNS2fekqSqLkpyUZLc//73P0ofDQAwzmruE/YLVfXuJI+arfq57r5yFfvel+TUJcunzNYttTfJVd39xSQfqqq/y2Ipu3pZhkuSXJIk27dvP+RDxQEAjhWrmQlLd78+yeuPcN9XJzlj9pijfUkuSLL8ysc/zuIDwV9RVVuyeHjy+iP8HGCd2LFjRxYWFrJt27bs3LlzdByAdW01V0c+rKqurqrPVNUtVXVbVX3qcL/X3bcmuTjJlUmuS3JZd7+vql5UVefNhl2Z5GNV9f4kb0rynO7+2F3/xwFGWlhYyL59+7KwsDA6CsC6t5qZsF/L4izWq5NsT/KULM5YHVZ370qya9m6Fyx530mePfsBANgwVnN1ZLp7T5JN3X1bd78iiasYAQDuhtXMhH2uqo5Pcm1V7Uzy0ayyvAHTOftXzx4d4U6O/8TxOS7H5cZP3Liu8r3tJ942OgLAnaymTD15Nu7iJJ/N4hWP3z9lKACAebeaW1TcMHv7hSQvnDYOAMDG4LAiAMAAShgAwACrLmFVda8pgwDHvr5X5/YTb0/fy4MtAA5nNTdr/fbZzVQ/MFv+pqr69cmTAcecL579xdzymFvyxbO/ODoKwLq3mpmwX0zyPUk+liTd/a4kD58yFADAvFvtzVpvXLbqtgmyAABsGKu5WeuNVfXtSbqq7pHkGVl8FiQAAHfRambCfjzJ05OcnGRfkgfPlgEAuItWc7PWm5P8xzXIAgCwYRyyhFXVryY55HXm3f2TkyQCANgAVpoJ271mKQAANphDlrDufuVaBgEA2EhWOhz5S939zKp6XQ5yWLK7z5s0GQDAHFvpcOTvzV5fshZBAAA2kpUOR14ze/vg7v7lpduq6hlJ3jJlMACAebaa+4T98EHW/chRzgEAsKGsdE7YhUl+KMnpVXXFkk0nJfn41MEAOLwdO3ZkYWEh27Zty86dO0fHAY7ASueE/XWSjybZkuSlS9Z/Osm7pwwFwOosLCxk3759o2MAd8FK54TdkOSGJN+2dnEAADaGw54TVlUPq6qrq+ozVXVLVd1WVZ9ai3AAAPPqsM+OTPJrSS5I8uok25M8JckDpgwFsB695eGPGB3hTj6/eVNSlc/v3buu8j3irS6gh8NZTQlLd++pqk3dfVuSV1TVO5M8b9poAADzewHKakrY56rq+CTXVtXOLJ6sv5pbWwAA3G3zegHKasrUk5NsSnJxks8mOTXJ908ZCgBg3h12Jmx2lWSSfD7JC6eNAwCwMax0s9b35CAP7j6gux80SSIAVu2+3Xd4BY4dK82EPW7NUgBwlzzptttHRwDuosPdrDVJUlVfmeRbZot/2903TR0MAGCereZmrT+Q5G+TPDHJDyS5qqqeMHUwAIB5tppbVDw/ybccmP2qqq1J/jzJ5VMGAwCYZ6u5RcVxyw4/fmyVvwcAwCGsZibsz6rqyiSvmi3/YJJd00UCAJh/q7lP2HOq6vFJvmO26pLufu20sQAA5tthS1hVPTvJH3X3a9YgDwDAhrCac7tOSvKGqvrLqrp4drsKAADuhsOWsO5+YXd/fZKnJ/mqJG+pqj+fPBkAwBw7kqscb0qykMWrI//1NHEAADaG1dys9b9U1ZuT/EWSr0jyNM+NBAC4e1Zzi4pTkzyzu6+dOgwAwEaxmltUPG8tggAAbCSrmQkDAGZ27NiRhYWFbNu2LTt37hwdh2OYEgYAR2BhYSH79u0bHYM5oIQBAF/y3570hNER7uTjN31y8XXho+sq3/N///K79fsexA0AMIASBgAwwKQlrKrOqaoPVtWeqnruCuO+v6q6qrZPmQcAYL2YrIRV1aYkL0tybpIzk1xYVWceZNxJSZ6R5KqpsgAArDdTnph/VpI93X19klTVpUnOT/L+ZeN+LskvJHnOhFkAOAb92k+9bnSEO/nEzZ/90ut6ynfxS79vdASO0JSHI09OcuOS5b2zdV9SVQ9Ncmp3/9+VdlRVF1XV7qravX///qOfFABgjQ07Mb+qjkvyP5P81OHGdvcl3b29u7dv3bp1+nAAABObsoTty+JzJw84ZbbugJOSfEOSN1fVh5M8LMkVTs4HADaCKUvY1UnOqKrTq+r4JBckueLAxu7+ZHdv6e7Tuvu0JG9Pcl53754wEwDAujBZCevuW5NcnOTKJNcluay731dVL6qq86b6XACAY8Gkjy3q7l1Jdi1b94JDjH3klFkAANYTz44EgCNw4vH3vsMr3FVKGAAcgbO/9vGjIzAnPDsSAGAAJQwAYAAlDABgAOeEAQDr2gmbjrvD67xQwgCAde0hX3HS6AiTmK9KCQBwjFDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAaYtIRV1TlV9cGq2lNVzz3I9mdX1fur6t1V9RdV9TVT5gEAWC8mK2FVtSnJy5Kcm+TMJBdW1ZnLhr0zyfbuflCSy5PsnCoPAMB6MuVM2FlJ9nT39d19S5JLk5y/dEB3v6m7PzdbfHuSUybMAwCwbkxZwk5OcuOS5b2zdYfyo0lef7ANVXVRVe2uqt379+8/ihEBAMZYFyfmV9WTkmxP8uKDbe/uS7p7e3dv37p169qGAwCYwOYJ970vyalLlk+ZrbuDqnp0kucneUR3//OEeQAA1o0pZ8KuTnJGVZ1eVccnuSDJFUsHVNVDkvyvJOd1900TZgEAWFcmK2HdfWuSi5NcmeS6JJd19/uq6kVVdd5s2IuT/Kskr66qa6vqikPsDgBgrkx5ODLdvSvJrmXrXrDk/aOn/HwAgPVqXZyYDwCw0ShhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAANMWsKq6pyq+mBV7amq5x5k+5dV1R/Ntl9VVadNmQcAYL2YrIRV1aYkL0tybpIzk1xYVWcuG/ajSf6pu/9tkl9M8gtT5QEAWE+mnAk7K8me7r6+u29JcmmS85eNOT/JK2fvL0/yqKqqCTMBAKwLU5awk5PcuGR572zdQcd0961JPpnkKybMBACwLlR3T7PjqickOae7/9Ns+clJvrW7L14y5r2zMXtny38/G3Pzsn1dlOSi2eIDk3xwktDT25Lk5sOO4mjyna893/na852vPd/52jtWv/Ov6e6tB9uwecIP3Zfk1CXLp8zWHWzM3qranOQ+ST62fEfdfUmSSybKuWaqand3bx+dYyPxna893/na852vPd/52pvH73zKw5FXJzmjqk6vquOTXJDkimVjrkjyw7P3T0jyxp5qag4AYB2ZbCasu2+tqouTXJlkU5Lf7u73VdWLkuzu7iuS/FaS36uqPUk+nsWiBgAw96Y8HJnu3pVk17J1L1jy/gtJnjhlhnXmmD+kegzyna893/na852vPd/52pu773yyE/MBADg0jy0CABhACZtYVZ1QVX9bVe+qqvdV1QtHZ9ooqmpTVb2zqv50dJaNoKo+XFXvqaprq2r36DwbQVXdt6our6oPVNV1VfVtozPNs6p64Ozf7wM/n6qqZ47ONe+q6lmz/3++t6peVVUnjM50tDgcObHZEwBO7O7PVNU9kvxVkmd099sHR5t7VfXsJNuT3Lu7Hzc6z7yrqg8n2b78Pn9Mp6pemeQvu/vls6vQ79XdnxidayOYPZpvXxbvbXnD6DzzqqpOzuL/N8/s7s9X1WVJdnX374xNdnSYCZtYL/rMbPEesx/Nd2JVdUqS703y8tFZYApVdZ8kD8/iVebp7lsUsDX1qCR/r4Ctic1J7jm7n+i9kvzD4DxHjRK2BmaHxa5NclOS/9fdV43OtAH8UpIdSW4fHWQD6SRvqKprZk+5YFqnJ9mf5BWzw+4vr6oTR4faQC5I8qrRIeZdd+9L8pIkH0ny0SSf7O43jE119Chha6C7b+vuB2fxqQFnVdU3jM40z6rqcUlu6u5rRmfZYL6jux+a5NwkT6+qh48ONOc2J3lokt/o7ock+WyS546NtDHMDv2el+TVo7PMu6q6X5Lzs/hHx1cnObGqnjQ21dGjhK2h2aGCNyU5Z3SWOXd2kvNm5yhdmuS7qur3x0aaf7O/WNPdNyV5bZKzxiaae3uT7F0ys355FksZ0zs3yTu6+x9HB9kAHp3kQ929v7u/mOQ1Sb59cKajRgmbWFVtrar7zt7fM8ljknxgbKr51t3P6+5Tuvu0LB4yeGN3z81fTutRVZ1YVScdeJ/ku5O8d2yq+dbdC0lurKoHzlY9Ksn7B0baSC6MQ5Fr5SNJHlZV95pd6PaoJNcNznTUTHrHfJIkX5XklbMraY5Lcll3u2UC8+Yrk7x28b+R2ZzkD7v7z8ZG2hB+IskfzA6PXZ/kqYPzzL3ZHxmPSfJjo7NsBN19VVVdnuQdSW5N8s7M0Z3z3aICAGAAhyMBAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAGaq6rSqeu/s/faq+pXZ+0dW1dzcIBJYH9wnDOAgunt3kt2zxUcm+UySvx4WCJg7ZsKAuVBVz6+qv6uqv6qqV1XVT1fVm6tq+2z7ltmjrA7MeP1lVb1j9nOnWa7Z7NefVtVpSX48ybOq6tqq+s6q+lBV3WM27t5LlwFWy0wYcMyrqm/O4iOqHpzF/669I8lKD3C/KcljuvsLVXVGFh9Bs/1gA7v7w1X1m0k+090vmX3em5N8b5I/nn3ua2bPtQNYNTNhwDz4ziSv7e7PdfenklxxmPH3SPK/q+o9SV6d5Mwj/LyX518eEfTUJK84wt8HMBMGzLVb8y9/bJ6wZP2zkvxjkm+abf/Ckey0u982O6T5yCSbutvDyoEjZiYMmAdvTfLvq+qeVXVSku+brf9wkm+evX/CkvH3SfLR7r49yZOTbDrM/j+d5KRl6343yR/GLBhwFylhwDGvu9+R5I+SvCvJ65NcPdv0kiT/uaremWTLkl/59SQ/XFXvSvJ1ST57mI94XZL/cODE/Nm6P0hyvyyeTwZwxKq7R2cAOKqq6mez5ET6iT7jCUnO7+4nT/UZwHxzThjAEaqqX01ybpLHjs4CHLvMhAEADOCcMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAH+P8QchNlEr4FQAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": [],
- "needs_background": "light"
- }
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "1W_oRCVczIgJ"
- },
- "source": [
- "## 3.2. Zbiór Test"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 419
- },
- "id": "LJzygNqKzOWY",
- "outputId": "ad080f20-e3b3-4078-ad6a-3829cbe3829f"
- },
- "source": [
- "wine_test"
- ],
- "execution_count": 11,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " fixed acidity | \n",
- " volatile acidity | \n",
- " citric acid | \n",
- " residual sugar | \n",
- " chlorides | \n",
- " free sulfur dioxide | \n",
- " total sulfur dioxide | \n",
- " density | \n",
- " pH | \n",
- " sulphates | \n",
- " alcohol | \n",
- " quality | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 75 | \n",
- " 8.8 | \n",
- " 0.410 | \n",
- " 0.64 | \n",
- " 2.2 | \n",
- " 0.093 | \n",
- " 9.0 | \n",
- " 42.0 | \n",
- " 0.99860 | \n",
- " 3.54 | \n",
- " 0.66 | \n",
- " 10.5 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 1283 | \n",
- " 8.7 | \n",
- " 0.630 | \n",
- " 0.28 | \n",
- " 2.7 | \n",
- " 0.096 | \n",
- " 17.0 | \n",
- " 69.0 | \n",
- " 0.99734 | \n",
- " 3.26 | \n",
- " 0.63 | \n",
- " 10.2 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 408 | \n",
- " 10.4 | \n",
- " 0.340 | \n",
- " 0.58 | \n",
- " 3.7 | \n",
- " 0.174 | \n",
- " 6.0 | \n",
- " 16.0 | \n",
- " 0.99700 | \n",
- " 3.19 | \n",
- " 0.70 | \n",
- " 11.3 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 1281 | \n",
- " 7.1 | \n",
- " 0.460 | \n",
- " 0.20 | \n",
- " 1.9 | \n",
- " 0.077 | \n",
- " 28.0 | \n",
- " 54.0 | \n",
- " 0.99560 | \n",
- " 3.37 | \n",
- " 0.64 | \n",
- " 10.4 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 1118 | \n",
- " 7.1 | \n",
- " 0.390 | \n",
- " 0.12 | \n",
- " 2.1 | \n",
- " 0.065 | \n",
- " 14.0 | \n",
- " 24.0 | \n",
- " 0.99252 | \n",
- " 3.30 | \n",
- " 0.53 | \n",
- " 13.3 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 1461 | \n",
- " 6.2 | \n",
- " 0.785 | \n",
- " 0.00 | \n",
- " 2.1 | \n",
- " 0.060 | \n",
- " 6.0 | \n",
- " 13.0 | \n",
- " 0.99664 | \n",
- " 3.59 | \n",
- " 0.61 | \n",
- " 10.0 | \n",
- " 4 | \n",
- "
\n",
- " \n",
- " 1016 | \n",
- " 8.9 | \n",
- " 0.380 | \n",
- " 0.40 | \n",
- " 2.2 | \n",
- " 0.068 | \n",
- " 12.0 | \n",
- " 28.0 | \n",
- " 0.99486 | \n",
- " 3.27 | \n",
- " 0.75 | \n",
- " 12.6 | \n",
- " 7 | \n",
- "
\n",
- " \n",
- " 1412 | \n",
- " 8.2 | \n",
- " 0.240 | \n",
- " 0.34 | \n",
- " 5.1 | \n",
- " 0.062 | \n",
- " 8.0 | \n",
- " 22.0 | \n",
- " 0.99740 | \n",
- " 3.22 | \n",
- " 0.94 | \n",
- " 10.9 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 424 | \n",
- " 7.7 | \n",
- " 0.960 | \n",
- " 0.20 | \n",
- " 2.0 | \n",
- " 0.047 | \n",
- " 15.0 | \n",
- " 60.0 | \n",
- " 0.99550 | \n",
- " 3.36 | \n",
- " 0.44 | \n",
- " 10.9 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 120 | \n",
- " 7.3 | \n",
- " 1.070 | \n",
- " 0.09 | \n",
- " 1.7 | \n",
- " 0.178 | \n",
- " 10.0 | \n",
- " 89.0 | \n",
- " 0.99620 | \n",
- " 3.30 | \n",
- " 0.57 | \n",
- " 9.0 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- "
\n",
- "
360 rows × 12 columns
\n",
- "
"
- ],
- "text/plain": [
- " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n",
- "75 8.8 0.410 0.64 ... 0.66 10.5 5\n",
- "1283 8.7 0.630 0.28 ... 0.63 10.2 6\n",
- "408 10.4 0.340 0.58 ... 0.70 11.3 6\n",
- "1281 7.1 0.460 0.20 ... 0.64 10.4 6\n",
- "1118 7.1 0.390 0.12 ... 0.53 13.3 6\n",
- "... ... ... ... ... ... ... ...\n",
- "1461 6.2 0.785 0.00 ... 0.61 10.0 4\n",
- "1016 8.9 0.380 0.40 ... 0.75 12.6 7\n",
- "1412 8.2 0.240 0.34 ... 0.94 10.9 6\n",
- "424 7.7 0.960 0.20 ... 0.44 10.9 5\n",
- "120 7.3 1.070 0.09 ... 0.57 9.0 5\n",
- "\n",
- "[360 rows x 12 columns]"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 11
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "1IAtBylEzS8w",
- "outputId": "c7e29abc-1e4b-41ef-8a2e-6185ac8180fe"
- },
- "source": [
- "wine_test[\"quality\"].value_counts()"
- ],
- "execution_count": 12,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "5 155\n",
- "6 149\n",
- "7 37\n",
- "4 16\n",
- "8 2\n",
- "3 1\n",
- "Name: quality, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 12
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 297
- },
- "id": "V-9cwcrczS-3",
- "outputId": "93893d4d-4dca-4e15-8dd3-c16aa7414462"
- },
- "source": [
- "wine_test.describe(include='all')"
- ],
- "execution_count": 13,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " fixed acidity | \n",
- " volatile acidity | \n",
- " citric acid | \n",
- " residual sugar | \n",
- " chlorides | \n",
- " free sulfur dioxide | \n",
- " total sulfur dioxide | \n",
- " density | \n",
- " pH | \n",
- " sulphates | \n",
- " alcohol | \n",
- " quality | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " count | \n",
- " 360.000000 | \n",
- " 360.000000 | \n",
- " 360.000000 | \n",
- " 360.000000 | \n",
- " 360.000000 | \n",
- " 360.000000 | \n",
- " 360.000000 | \n",
- " 360.000000 | \n",
- " 360.000000 | \n",
- " 360.000000 | \n",
- " 360.000000 | \n",
- " 360.000000 | \n",
- "
\n",
- " \n",
- " mean | \n",
- " 8.348611 | \n",
- " 0.518764 | \n",
- " 0.275444 | \n",
- " 2.542222 | \n",
- " 0.086114 | \n",
- " 16.093056 | \n",
- " 48.777778 | \n",
- " 0.996747 | \n",
- " 3.301083 | \n",
- " 0.653833 | \n",
- " 10.368889 | \n",
- " 5.586111 | \n",
- "
\n",
- " \n",
- " std | \n",
- " 1.580574 | \n",
- " 0.182554 | \n",
- " 0.182508 | \n",
- " 1.528465 | \n",
- " 0.043445 | \n",
- " 10.421097 | \n",
- " 35.005778 | \n",
- " 0.001792 | \n",
- " 0.145379 | \n",
- " 0.168306 | \n",
- " 1.041729 | \n",
- " 0.767245 | \n",
- "
\n",
- " \n",
- " min | \n",
- " 5.000000 | \n",
- " 0.120000 | \n",
- " 0.000000 | \n",
- " 0.900000 | \n",
- " 0.042000 | \n",
- " 3.000000 | \n",
- " 6.000000 | \n",
- " 0.990070 | \n",
- " 2.870000 | \n",
- " 0.370000 | \n",
- " 8.700000 | \n",
- " 3.000000 | \n",
- "
\n",
- " \n",
- " 25% | \n",
- " 7.200000 | \n",
- " 0.380000 | \n",
- " 0.120000 | \n",
- " 1.900000 | \n",
- " 0.070000 | \n",
- " 8.000000 | \n",
- " 23.000000 | \n",
- " 0.995760 | \n",
- " 3.210000 | \n",
- " 0.550000 | \n",
- " 9.500000 | \n",
- " 5.000000 | \n",
- "
\n",
- " \n",
- " 50% | \n",
- " 8.000000 | \n",
- " 0.500000 | \n",
- " 0.270000 | \n",
- " 2.150000 | \n",
- " 0.079000 | \n",
- " 14.000000 | \n",
- " 40.000000 | \n",
- " 0.996645 | \n",
- " 3.300000 | \n",
- " 0.620000 | \n",
- " 10.100000 | \n",
- " 6.000000 | \n",
- "
\n",
- " \n",
- " 75% | \n",
- " 9.200000 | \n",
- " 0.640000 | \n",
- " 0.420000 | \n",
- " 2.600000 | \n",
- " 0.090000 | \n",
- " 21.000000 | \n",
- " 65.750000 | \n",
- " 0.997683 | \n",
- " 3.390000 | \n",
- " 0.720000 | \n",
- " 11.000000 | \n",
- " 6.000000 | \n",
- "
\n",
- " \n",
- " max | \n",
- " 15.600000 | \n",
- " 1.115000 | \n",
- " 0.790000 | \n",
- " 15.500000 | \n",
- " 0.611000 | \n",
- " 68.000000 | \n",
- " 289.000000 | \n",
- " 1.003690 | \n",
- " 3.750000 | \n",
- " 1.950000 | \n",
- " 14.000000 | \n",
- " 8.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " fixed acidity volatile acidity ... alcohol quality\n",
- "count 360.000000 360.000000 ... 360.000000 360.000000\n",
- "mean 8.348611 0.518764 ... 10.368889 5.586111\n",
- "std 1.580574 0.182554 ... 1.041729 0.767245\n",
- "min 5.000000 0.120000 ... 8.700000 3.000000\n",
- "25% 7.200000 0.380000 ... 9.500000 5.000000\n",
- "50% 8.000000 0.500000 ... 10.100000 6.000000\n",
- "75% 9.200000 0.640000 ... 11.000000 6.000000\n",
- "max 15.600000 1.115000 ... 14.000000 8.000000\n",
- "\n",
- "[8 rows x 12 columns]"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 13
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 405
- },
- "id": "3GksWzExaHV7",
- "outputId": "43e5e6bc-42c2-4684-d1bf-66af4ba4d0da"
- },
- "source": [
- "fig = plt.figure(figsize = (10,6))\n",
- "sns.barplot(x = 'quality', y = 'volatile acidity', data = wine)"
- ],
- "execution_count": 14,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 14
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAFzCAYAAAB2A95GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAYtklEQVR4nO3de7BlZ1km8OdNNzGQCRdNa2suJuNEnKgI2AY0CpSAJojJDIISB1BKic4QRVC6YjGFgs5U2cLoqEEngyJeIMYMaOM0hFFuioLpQLgkAW0DId1yTML9akjyzh9nt550+rI79Drf6X1+v6pTe6+1vrP3k1Wp5DlrfWut6u4AALC6jhkdAABgPVLCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAbYODrA4TrxxBP7tNNOGx0DAOCQrr766lu7e9P+th11Jey0007Lzp07R8cAADikqrrxQNucjgQAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABjgqHuA99Fq69atWVpayubNm7Nt27bRcQCAwZSwVbK0tJQ9e/aMjgEArBFORwIADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAwwWQmrqt+pqpur6r0H2F5V9WtVtauq3l1VD50qCwDAWjPlkbDfTXLOQbafm+SM2c+FSX5zwiwAAGvKZCWsu9+S5KMHGXJ+kt/rZW9Lcv+q+sqp8gAArCUj54SdlOSmFcu7Z+sAABbeUTExv6ourKqdVbXzlltuGR0HAOCLNrKE7Ulyyorlk2fr7qa7L+3uLd29ZdOmTasSDgBgSiNL2PYkT5tdJfnwJJ/o7g8PzAMAsGo2TvXBVfXKJI9KcmJV7U7yc0nulSTd/VtJdiR5XJJdST6b5OlTZQEAWGsmK2HdfcEhtneSZ071/QAAa9lRMTEfAGDRKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADbBwdYArf/NzfGx3hbk649VPZkORDt35qTeW7+pefNjoCAKxLjoQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAwwaQmrqnOq6v1VtauqLt7P9lOr6o1V9c6qendVPW7KPAAAa8VkJayqNiS5JMm5Sc5MckFVnbnPsP+a5PLufkiSJyd5yVR5AADWkimPhJ2VZFd339DdtyW5LMn5+4zpJPedvb9fkn+cMA8AwJqxccLPPinJTSuWdyd52D5jfj7J66vqJ5Icn+QxE+YBAFgzRk/MvyDJ73b3yUkel+T3q+pumarqwqraWVU7b7nlllUPCQBwpE1ZwvYkOWXF8smzdSv9SJLLk6S7/ybJcUlO3PeDuvvS7t7S3Vs2bdo0UVwAgNUzZQm7KskZVXV6VR2b5Yn32/cZ86Ekj06Sqvr3WS5hDnUBAAtvshLW3bcnuSjJlUmuz/JVkNdW1Qur6rzZsJ9O8oyqeleSVyb54e7uqTIBAKwVU07MT3fvSLJjn3XPX/H+uiRnT5kBAGAtGj0xHwBgXVLCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGmPRmrTDS1q1bs7S0lM2bN2fbtm2j4wDAXShhLKylpaXs2bPvM+MBYG1wOhIAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABggI2jA6wXdx57/F1eAYD17ZAlrKquTvI7SV7R3R+bPtJi+swZ3zU6wqQ+9MJvHB3hbm7/6Jcm2ZjbP3rjmsp36vPfMzoCAGvAPKcjfyDJVyW5qqouq6rvrqqaOBcAwEI7ZAnr7l3d/bwkX5vkFVk+KnZjVb2gqr506oAAAItoron5VfWgJC9O8stJ/k+SJyX5ZJI3TBcNAGBxzTsn7ONJfjvJxd39z7NNb6+qs6cMBwCwqOa5OvJJ3X3DyhVVdXp3f6C7nzBRLgCAhTbP6cgr5lwHAMCcDngkrKq+LsnXJ7lfVa084nXfJMdNHQwAYJEd7HTkA5M8Psn9k3zvivWfSvKMKUMBACy6A5aw7v7TJH9aVd/a3X+zipkAABbewU5Hbu3ubUl+sKou2Hd7d//kpMkAABbYwU5HXj973bkaQQAA1pODnY58zez15asXBwBgfTjY6cjXJOkDbe/u8yZJBACwDhzsdOSLZq9PSLI5yR/Mli9I8k9ThgIAWHQHOx355iSpqhd395YVm15TVeaJAQB8Eea5Y/7xVfVv9y5U1elJjp8uEgDA4pvn2ZHPTvKmqrohSSX56iQ/NmkqOAJOPO7OJLfPXgFgbTlkCevu11XVGUm+brbqfd39z9PGgi/ezzzo46MjAMABHezqyO/s7jfs89zIJPmaqkp3v2ribAAAC+tgR8IemeQNuetzI/fqJEoYAMA9dLCrI39u9vr01YsDALA+HPLqyKr671V1/xXLD6iqX5w2FgDAYpvnFhXndve/zHDu7o8ledw8H15V51TV+6tqV1VdfIAx319V11XVtVX1ivliAwAc3ea5RcWGqvqSvVdEVtW9k3zJoX6pqjYkuSTJY5PsTnJVVW3v7utWjDkjyc8mObu7P1ZVX35P/iEAAI4285SwP0zyF1X1stny05PM81Dvs5Ls6u4bkqSqLktyfpLrVox5RpJLZkfX0t03zxscAOBoNs99wn6pqt6d5NGzVb/Q3VfO8dknJblpxfLuJA/bZ8zXJklVvTXJhiQ/392vm+OzAQCOavMcCUt3vzbJayf6/jOSPCrJyUneUlXfuHIOWpJU1YVJLkySU089dYIYAACra56rIx9eVVdV1aer6raquqOqPjnHZ+9JcsqK5ZNn61banWR7d3+huz+Q5O+yXMruorsv7e4t3b1l06ZNc3w1AMDaNs/Vkb+R5IIkf5/k3kl+NMsT7g/lqiRnVNXpVXVskicn2b7PmD/J8lGwVNWJWT49ecNcyYE1Z+vWrXna056WrVu3jo4CsObNU8LS3buSbOjuO7r7ZUnOmeN3bk9yUZIrk1yf5PLuvraqXlhV582GXZnkI1V1XZI3Jnlud3/knvyDAOMtLS1lz549WVpaGh0FYM2bZ07YZ2dHsq6pqm1JPpz5y9uOJDv2Wff8Fe87yXNmPwAA68Y8Zeqps3EXJflMlud5fd+UoQAAFt08t6i4cfb280leMG0cYF5n//rZoyPczbEfPzbH5Jjc9PGb1lS+t/7EW0dHALibuU4rAgBwZClhAAADzF3Cquo+UwYBAFhP5rlZ67fNbiHxvtnyN1XVSyZPBgCwwOY5EvYrSb47yUeSpLvfleQRU4YCjk59n86dx9+Zvk+PjgKw5s377MibqmrlqjumiQMczb5w9hdGRwA4asxTwm6qqm9L0lV1ryTPyvId8AEAuIfmOR3540memeSkLD+A+8GzZQAA7qF5btZ6a5L/tApZAADWjQOWsKr69SQHnF3b3T85SSIAgHXgYEfCdq5aCgCAdeaAJay7X76aQQAA1pODnY781e7+qap6TfZzWrK7z5s0GQDAAjvY6cjfn72+aDWCAACsJwc7HXn17O2Du/t/rtxWVc9K8uYpgwEALLJ57hP2Q/tZ98NHOAcAwLpysDlhFyT5wSSnV9X2FZtOSPLRqYMBACyyg80J++skH05yYpIXr1j/qSTvnjIUAMCiO9icsBuT3JjkW1cvDgCHY+vWrVlaWsrmzZuzbdu20XGAw3DIOWFV9fCquqqqPl1Vt1XVHVX1ydUIB8DBLS0tZc+ePVlaWhodBThM80zM/40kFyT5+yT3TvKjSS6ZMhQAwKKbp4Slu3cl2dDdd3T3y5KcM20sAIDFdrCJ+Xt9tqqOTXJNVW3L8mT9ucobwCJ58yMeOTrC3Xxu44akKp/bvXtN5XvkW9xKEg5lnhL21CQbklyU5NlJTknyfVOGAgDYa1EvQDlkCZtdJZkkn0vygmnjAADc1d4LUBbNwW7W+p7s58Hde3X3gyZJBACwDhzsSNjjVy0FAPfI/bvv8gocPQ51s9YkSVV9RZJvmS3+bXffPHUwAA7tKXfcOToCcA/Nc7PW70/yt0melOT7k7y9qp44dTAAgEU2z9WRz0vyLXuPflXVpiR/nuSKKYMBACyyee73dcw+px8/MufvAQBwAPMcCXtdVV2Z5JWz5R9IsmO6SAAAi2+e+4Q9t6qekOTbZ6su7e5XTxsLAGCxHbKEVdVzkvxRd79qFfIAAKwL88ztOiHJ66vqL6vqotntKgAA+CIcsoR19wu6++uTPDPJVyZ5c1X9+eTJAAAW2OFc5XhzkqUsXx355dPEAQBYH+a5Wet/qao3JfmLJF+W5BmeGwkA8MWZ5xYVpyT5qe6+ZuowAADrxTy3qPjZ1QgCALCeuPM9AMAAShgAwADzzAkDAGa2bt2apaWlbN68Odu2bRsdh6OYEgYAh2FpaSl79uwZHWMy/+0pTxwd4W4+evMnll+XPrym8j3vD674on7f6UgAgAGUMACAASYtYVV1TlW9v6p2VdXFBxn3fVXVVbVlyjwAAGvFZCWsqjYkuSTJuUnOTHJBVZ25n3EnJHlWkrdPlQUAYK2Z8kjYWUl2dfcN3X1bksuSnL+fcb+Q5JeSfH7CLAAAa8qUV0eelOSmFcu7kzxs5YCqemiSU7r7/1bVcyfMAsBR6Dd++jWjI9zNx2/9zL+8rqV8F734e0dH4DANm5hfVcck+R9JfnqOsRdW1c6q2nnLLbdMHw4AYGJTlrA9WX74914nz9btdUKSb0jypqr6YJKHJ9m+v8n53X1pd2/p7i2bNm2aMDIAwOqYsoRdleSMqjq9qo5N8uQk2/du7O5PdPeJ3X1ad5+W5G1JzuvunRNmAgBYEyYrYd19e5KLklyZ5Pokl3f3tVX1wqo6b6rvBQA4Gkz62KLu3pFkxz7rnn+AsY+aMgsAwFri2ZEAcBiOP/a+d3mFe0oJA4DDcPbXPGF0BBaEZ0cCAAyghAEADKCEAQAMYE4YALCmHbfhmLu8LgolDABY0x7yZSeMjjCJxaqUAABHCSUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGCASUtYVZ1TVe+vql1VdfF+tj+nqq6rqndX1V9U1VdPmQcAYK2YrIRV1YYklyQ5N8mZSS6oqjP3GfbOJFu6+0FJrkiybao8AABryZRHws5Ksqu7b+ju25JcluT8lQO6+43d/dnZ4tuSnDxhHgCANWPKEnZSkptWLO+erTuQH0ny2gnzAACsGRtHB0iSqnpKki1JHnmA7RcmuTBJTj311FVMBgAwjSmPhO1JcsqK5ZNn6+6iqh6T5HlJzuvuf97fB3X3pd29pbu3bNq0aZKwAACracoSdlWSM6rq9Ko6NsmTk2xfOaCqHpLkf2W5gN08YRYAgDVlshLW3bcnuSjJlUmuT3J5d19bVS+sqvNmw345yb9J8sdVdU1VbT/AxwEALJRJ54R1944kO/ZZ9/wV7x8z5fcDAKxV7pgPADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwwKQlrKrOqar3V9Wuqrp4P9u/pKr+aLb97VV12pR5AADWislKWFVtSHJJknOTnJnkgqo6c59hP5LkY93975L8SpJfmioPAMBaMuWRsLOS7OruG7r7tiSXJTl/nzHnJ3n57P0VSR5dVTVhJgCANWHKEnZSkptWLO+erdvvmO6+PcknknzZhJkAANaE6u5pPrjqiUnO6e4fnS0/NcnDuvuiFWPeOxuze7b8D7Mxt+7zWRcmuXC2+MAk758k9PROTHLrIUdxJNnnq88+X332+eqzz1ff0brPv7q7N+1vw8YJv3RPklNWLJ88W7e/MburamOS+yX5yL4f1N2XJrl0opyrpqp2dveW0TnWE/t89dnnq88+X332+epbxH0+5enIq5KcUVWnV9WxSZ6cZPs+Y7Yn+aHZ+ycmeUNPdWgOAGANmexIWHffXlUXJbkyyYYkv9Pd11bVC5Ps7O7tSX47ye9X1a4kH81yUQMAWHhTno5Md+9IsmOfdc9f8f7zSZ40ZYY15qg/pXoUss9Xn32++uzz1Wefr76F2+eTTcwHAODAPLYIAGAAJWxiVXVcVf1tVb2rqq6tqheMzrReVNWGqnpnVf3Z6CzrQVV9sKreU1XXVNXO0XnWg6q6f1VdUVXvq6rrq+pbR2daZFX1wNm/33t/PllVPzU616KrqmfP/v/53qp6ZVUdNzrTkeJ05MRmTwA4vrs/XVX3SvJXSZ7V3W8bHG3hVdVzkmxJct/ufvzoPIuuqj6YZMu+9/ljOlX18iR/2d0vnV2Ffp/u/vjoXOvB7NF8e7J8b8sbR+dZVFV1Upb/v3lmd3+uqi5PsqO7f3dssiPDkbCJ9bJPzxbvNfvRfCdWVScn+Z4kLx2dBaZQVfdL8ogsX2We7r5NAVtVj07yDwrYqtiY5N6z+4neJ8k/Ds5zxChhq2B2WuyaJDcn+X/d/fbRmdaBX02yNcmdo4OsI53k9VV19ewpF0zr9CS3JHnZ7LT7S6vq+NGh1pEnJ3nl6BCLrrv3JHlRkg8l+XCST3T368emOnKUsFXQ3Xd094Oz/NSAs6rqG0ZnWmRV9fgkN3f31aOzrDPf3t0PTXJukmdW1SNGB1pwG5M8NMlvdvdDknwmycVjI60Ps1O/5yX549FZFl1VPSDJ+Vn+o+OrkhxfVU8Zm+rIUcJW0exUwRuTnDM6y4I7O8l5szlKlyX5zqr6g7GRFt/sL9Z0981JXp3krLGJFt7uJLtXHFm/IsuljOmdm+Qd3f1Po4OsA49J8oHuvqW7v5DkVUm+bXCmI0YJm1hVbaqq+8/e3zvJY5O8b2yqxdbdP9vdJ3f3aVk+ZfCG7l6Yv5zWoqo6vqpO2Ps+yXclee/YVIutu5eS3FRVD5ytenSS6wZGWk8uiFORq+VDSR5eVfeZXej26CTXD850xEx6x3ySJF+Z5OWzK2mOSXJ5d7tlAovmK5K8evm/kdmY5BXd/bqxkdaFn0jyh7PTYzckefrgPAtv9kfGY5P82Ogs60F3v72qrkjyjiS3J3lnFujO+W5RAQAwgNORAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAzVXVaVb139n5LVf3a7P2jqmphbhAJrA3uEwawH929M8nO2eKjknw6yV8PCwQsHEfCgIVQVc+rqr+rqr+qqldW1c9U1Zuqasts+4mzR1ntPeL1l1X1jtnP3Y5yzY5+/VlVnZbkx5M8u6quqarvqKoPVNW9ZuPuu3IZYF6OhAFHvar65iw/ourBWf7v2juSHOwB7jcneWx3f76qzsjyI2i27G9gd3+wqn4ryae7+0Wz73tTku9J8iez733V7Ll2AHNzJAxYBN+R5NXd/dnu/mSS7YcYf68k/7uq3pPkj5OceZjf99L86yOCnp7kZYf5+wCOhAEL7fb86x+bx61Y/+wk/5Tkm2bbP384H9rdb52d0nxUkg3d7WHlwGFzJAxYBG9J8h+q6t5VdUKS752t/2CSb569f+KK8fdL8uHuvjPJU5NsOMTnfyrJCfus+70kr4ijYMA9pIQBR73ufkeSP0ryriSvTXLVbNOLkvznqnpnkhNX/MpLkvxQVb0rydcl+cwhvuI1Sf7j3on5s3V/mOQBWZ5PBnDYqrtHZwA4oqrq57NiIv1E3/HEJOd391On+g5gsZkTBnCYqurXk5yb5HGjswBHL0fCAAAGMCcMAGAAJQwAYAAlDABgACUMAGAAJQwAYAAlDABggP8PDVCRsMwy1LoAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": [],
- "needs_background": "light"
- }
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "w5xmkUgGzdxs"
- },
- "source": [
- "## 3.3. Cały zbiór"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 419
- },
- "id": "thGHHVJXzeGe",
- "outputId": "c50d4be9-db0d-438f-8a97-54a8a96d180c"
- },
- "source": [
- "wine"
- ],
- "execution_count": 15,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " fixed acidity | \n",
- " volatile acidity | \n",
- " citric acid | \n",
- " residual sugar | \n",
- " chlorides | \n",
- " free sulfur dioxide | \n",
- " total sulfur dioxide | \n",
- " density | \n",
- " pH | \n",
- " sulphates | \n",
- " alcohol | \n",
- " quality | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 7.4 | \n",
- " 0.700 | \n",
- " 0.00 | \n",
- " 1.9 | \n",
- " 0.076 | \n",
- " 11.0 | \n",
- " 34.0 | \n",
- " 0.99780 | \n",
- " 3.51 | \n",
- " 0.56 | \n",
- " 9.4 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 7.8 | \n",
- " 0.880 | \n",
- " 0.00 | \n",
- " 2.6 | \n",
- " 0.098 | \n",
- " 25.0 | \n",
- " 67.0 | \n",
- " 0.99680 | \n",
- " 3.20 | \n",
- " 0.68 | \n",
- " 9.8 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 7.8 | \n",
- " 0.760 | \n",
- " 0.04 | \n",
- " 2.3 | \n",
- " 0.092 | \n",
- " 15.0 | \n",
- " 54.0 | \n",
- " 0.99700 | \n",
- " 3.26 | \n",
- " 0.65 | \n",
- " 9.8 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 11.2 | \n",
- " 0.280 | \n",
- " 0.56 | \n",
- " 1.9 | \n",
- " 0.075 | \n",
- " 17.0 | \n",
- " 60.0 | \n",
- " 0.99800 | \n",
- " 3.16 | \n",
- " 0.58 | \n",
- " 9.8 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 7.4 | \n",
- " 0.700 | \n",
- " 0.00 | \n",
- " 1.9 | \n",
- " 0.076 | \n",
- " 11.0 | \n",
- " 34.0 | \n",
- " 0.99780 | \n",
- " 3.51 | \n",
- " 0.56 | \n",
- " 9.4 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 1594 | \n",
- " 6.2 | \n",
- " 0.600 | \n",
- " 0.08 | \n",
- " 2.0 | \n",
- " 0.090 | \n",
- " 32.0 | \n",
- " 44.0 | \n",
- " 0.99490 | \n",
- " 3.45 | \n",
- " 0.58 | \n",
- " 10.5 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 1595 | \n",
- " 5.9 | \n",
- " 0.550 | \n",
- " 0.10 | \n",
- " 2.2 | \n",
- " 0.062 | \n",
- " 39.0 | \n",
- " 51.0 | \n",
- " 0.99512 | \n",
- " 3.52 | \n",
- " 0.76 | \n",
- " 11.2 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 1596 | \n",
- " 6.3 | \n",
- " 0.510 | \n",
- " 0.13 | \n",
- " 2.3 | \n",
- " 0.076 | \n",
- " 29.0 | \n",
- " 40.0 | \n",
- " 0.99574 | \n",
- " 3.42 | \n",
- " 0.75 | \n",
- " 11.0 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " 1597 | \n",
- " 5.9 | \n",
- " 0.645 | \n",
- " 0.12 | \n",
- " 2.0 | \n",
- " 0.075 | \n",
- " 32.0 | \n",
- " 44.0 | \n",
- " 0.99547 | \n",
- " 3.57 | \n",
- " 0.71 | \n",
- " 10.2 | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " 1598 | \n",
- " 6.0 | \n",
- " 0.310 | \n",
- " 0.47 | \n",
- " 3.6 | \n",
- " 0.067 | \n",
- " 18.0 | \n",
- " 42.0 | \n",
- " 0.99549 | \n",
- " 3.39 | \n",
- " 0.66 | \n",
- " 11.0 | \n",
- " 6 | \n",
- "
\n",
- " \n",
- "
\n",
- "
1599 rows × 12 columns
\n",
- "
"
- ],
- "text/plain": [
- " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n",
- "0 7.4 0.700 0.00 ... 0.56 9.4 5\n",
- "1 7.8 0.880 0.00 ... 0.68 9.8 5\n",
- "2 7.8 0.760 0.04 ... 0.65 9.8 5\n",
- "3 11.2 0.280 0.56 ... 0.58 9.8 6\n",
- "4 7.4 0.700 0.00 ... 0.56 9.4 5\n",
- "... ... ... ... ... ... ... ...\n",
- "1594 6.2 0.600 0.08 ... 0.58 10.5 5\n",
- "1595 5.9 0.550 0.10 ... 0.76 11.2 6\n",
- "1596 6.3 0.510 0.13 ... 0.75 11.0 6\n",
- "1597 5.9 0.645 0.12 ... 0.71 10.2 5\n",
- "1598 6.0 0.310 0.47 ... 0.66 11.0 6\n",
- "\n",
- "[1599 rows x 12 columns]"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 15
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "Ua_ctPpVzeKJ",
- "outputId": "a43a2d6a-68dd-45b3-d51d-c8310d0ffe80"
- },
- "source": [
- "wine[\"quality\"].value_counts()"
- ],
- "execution_count": 16,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "5 681\n",
- "6 638\n",
- "7 199\n",
- "4 53\n",
- "8 18\n",
- "3 10\n",
- "Name: quality, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 16
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 297
- },
- "id": "-06v1i7XzeOz",
- "outputId": "91fa4c86-5f1c-4897-ac77-0771a60de93c"
- },
- "source": [
- "wine.describe(include='all')"
- ],
- "execution_count": 17,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " fixed acidity | \n",
- " volatile acidity | \n",
- " citric acid | \n",
- " residual sugar | \n",
- " chlorides | \n",
- " free sulfur dioxide | \n",
- " total sulfur dioxide | \n",
- " density | \n",
- " pH | \n",
- " sulphates | \n",
- " alcohol | \n",
- " quality | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " count | \n",
- " 1599.000000 | \n",
- " 1599.000000 | \n",
- " 1599.000000 | \n",
- " 1599.000000 | \n",
- " 1599.000000 | \n",
- " 1599.000000 | \n",
- " 1599.000000 | \n",
- " 1599.000000 | \n",
- " 1599.000000 | \n",
- " 1599.000000 | \n",
- " 1599.000000 | \n",
- " 1599.000000 | \n",
- "
\n",
- " \n",
- " mean | \n",
- " 8.319637 | \n",
- " 0.527821 | \n",
- " 0.270976 | \n",
- " 2.538806 | \n",
- " 0.087467 | \n",
- " 15.874922 | \n",
- " 46.467792 | \n",
- " 0.996747 | \n",
- " 3.311113 | \n",
- " 0.658149 | \n",
- " 10.422983 | \n",
- " 5.636023 | \n",
- "
\n",
- " \n",
- " std | \n",
- " 1.741096 | \n",
- " 0.179060 | \n",
- " 0.194801 | \n",
- " 1.409928 | \n",
- " 0.047065 | \n",
- " 10.460157 | \n",
- " 32.895324 | \n",
- " 0.001887 | \n",
- " 0.154386 | \n",
- " 0.169507 | \n",
- " 1.065668 | \n",
- " 0.807569 | \n",
- "
\n",
- " \n",
- " min | \n",
- " 4.600000 | \n",
- " 0.120000 | \n",
- " 0.000000 | \n",
- " 0.900000 | \n",
- " 0.012000 | \n",
- " 1.000000 | \n",
- " 6.000000 | \n",
- " 0.990070 | \n",
- " 2.740000 | \n",
- " 0.330000 | \n",
- " 8.400000 | \n",
- " 3.000000 | \n",
- "
\n",
- " \n",
- " 25% | \n",
- " 7.100000 | \n",
- " 0.390000 | \n",
- " 0.090000 | \n",
- " 1.900000 | \n",
- " 0.070000 | \n",
- " 7.000000 | \n",
- " 22.000000 | \n",
- " 0.995600 | \n",
- " 3.210000 | \n",
- " 0.550000 | \n",
- " 9.500000 | \n",
- " 5.000000 | \n",
- "
\n",
- " \n",
- " 50% | \n",
- " 7.900000 | \n",
- " 0.520000 | \n",
- " 0.260000 | \n",
- " 2.200000 | \n",
- " 0.079000 | \n",
- " 14.000000 | \n",
- " 38.000000 | \n",
- " 0.996750 | \n",
- " 3.310000 | \n",
- " 0.620000 | \n",
- " 10.200000 | \n",
- " 6.000000 | \n",
- "
\n",
- " \n",
- " 75% | \n",
- " 9.200000 | \n",
- " 0.640000 | \n",
- " 0.420000 | \n",
- " 2.600000 | \n",
- " 0.090000 | \n",
- " 21.000000 | \n",
- " 62.000000 | \n",
- " 0.997835 | \n",
- " 3.400000 | \n",
- " 0.730000 | \n",
- " 11.100000 | \n",
- " 6.000000 | \n",
- "
\n",
- " \n",
- " max | \n",
- " 15.900000 | \n",
- " 1.580000 | \n",
- " 1.000000 | \n",
- " 15.500000 | \n",
- " 0.611000 | \n",
- " 72.000000 | \n",
- " 289.000000 | \n",
- " 1.003690 | \n",
- " 4.010000 | \n",
- " 2.000000 | \n",
- " 14.900000 | \n",
- " 8.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " fixed acidity volatile acidity ... alcohol quality\n",
- "count 1599.000000 1599.000000 ... 1599.000000 1599.000000\n",
- "mean 8.319637 0.527821 ... 10.422983 5.636023\n",
- "std 1.741096 0.179060 ... 1.065668 0.807569\n",
- "min 4.600000 0.120000 ... 8.400000 3.000000\n",
- "25% 7.100000 0.390000 ... 9.500000 5.000000\n",
- "50% 7.900000 0.520000 ... 10.200000 6.000000\n",
- "75% 9.200000 0.640000 ... 11.100000 6.000000\n",
- "max 15.900000 1.580000 ... 14.900000 8.000000\n",
- "\n",
- "[8 rows x 12 columns]"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 17
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 405
- },
- "id": "hEe3BYcJaKnF",
- "outputId": "8ca44337-6615-47a5-e3c9-b3ad02c37bd0"
- },
- "source": [
- "fig = plt.figure(figsize = (10,6))\n",
- "sns.barplot(x = 'quality', y = 'volatile acidity', data = wine)"
- ],
- "execution_count": 18,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 18
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAFzCAYAAAB2A95GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAY00lEQVR4nO3de7SlZ10f8O8vM4RAGi6a0bFJMKmN2GgRcIxoFFgCNkFMWkQlFlSWEm2JIiizwqILBduu5QDVikEbkYsXQEhBBxsIVQQVBTOBcEkCdgyEzMgxE5A7CEl+/ePswcNk5syZZN7z7Nnn81nrrL3fy9n7m72yku95nme/b3V3AABYX8eNDgAAsBEpYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADbB4d4EidfPLJffrpp4+OAQBwWFdfffUt3b3lYMeOuRJ2+umnZ9euXaNjAAAcVlXdeKhjpiMBAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGOOZu4H2s2r59e5aWlrJ169bs2LFjdBwAYDAlbJ0sLS1l7969o2MAAHPCdCQAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwACTlbCqeklV3VxV7zvE8aqqX6uq3VX1nqp68FRZAADmzZQjYS9Lcu4qx89Lcubs56IkvzFhFgCAuTJZCevuP0/ysVVOuSDJ7/Sytye5T1V9zVR5AADmycg1YackuWnF9p7ZPgCAhXdMLMyvqouqaldV7dq3b9/oOAAAd9nIErY3yWkrtk+d7buD7r6su7d197YtW7asSzgAgCmNLGE7k/zI7FuSD0nyie7+yMA8AADrZvNUL1xVr0zy8CQnV9WeJL+Q5G5J0t2/meSKJI9OsjvJZ5M8aaosAADzZrIS1t0XHuZ4J3nKVO8PADDPjomF+QAAi0YJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGGDz6ABT+JZn/M7oCHdw0i2fyqYkH77lU3OV7+rn/cjoCACwIRkJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYYNISVlXnVtUHqmp3VV1ykOP3q6o/q6p3VdV7qurRU+YBAJgXk5WwqtqU5NIk5yU5K8mFVXXWAaf9lySv7u4HJXl8khdNlQcAYJ5MORJ2dpLd3X1Dd38hyauSXHDAOZ3kXrPn907y9xPmAQCYG5snfO1Tkty0YntPkm874JxfTPKmqvrpJCcmeeSEeQAA5sbohfkXJnlZd5+a5NFJfreq7pCpqi6qql1VtWvfvn3rHhIA4GibsoTtTXLaiu1TZ/tW+vEkr06S7v7rJCckOfnAF+ruy7p7W3dv27Jly0RxAQDWz5Ql7KokZ1bVGVV1fJYX3u884JwPJ3lEklTVv8lyCTPUBQAsvMlKWHffmuTiJFcmuT7L34K8tqqeW1Xnz077uSRPrqp3J3llkh/r7p4qEwDAvJhyYX66+4okVxyw79krnl+X5JwpMwAAzKPRC/MBADYkJQwAYAAlDABgACUMAGAAJQwAYAAlDABgACUMAGAAJQwAYIBJL9YKI23fvj1LS0vZunVrduzYMToOAHwZJYyFtbS0lL17D7xnPADMB9ORAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMctoRV1dVV9ZSquu96BAIA2Ag2r+GcH0rypCRXVdWuJC9N8qbu7kmTcUz58HP/7egId3Drx74iyebc+rEb5yrf/Z793tERAJgDhx0J6+7d3f2sJF+f5BVJXpLkxqp6TlV9xdQBAQAW0ZrWhFXVA5K8IMnzkvzvJD+Q5JNJ3jxdtMVy+/En5ra73yu3H3/i6CgAwBw47HRkVV2d5ONJfjvJJd39T7ND76iqc6YMt0g+c+b3jI4AAMyRtawJ+4HuvmHljqo6o7s/2N2PnSgXAMBCW8t05OVr3AcAwBodciSsqr4hyTcmuXdVrRzxuleSE6YOBgCwyFabjrx/ksckuU+S71ux/1NJnjxlKACARXfIEtbdf5Tkj6rq27v7r9cxEwDAwlttOnJ7d+9I8sNVdeGBx7v7ZyZNBgCwwFabjrx+9rhrPYIAAGwkq01Hvn72+PL1iwMAsDGsNh35+iSHvD9kd58/SSIAgA1gtenI588eH5tka5Lfm21fmOQfpgwFALDoVpuOfGuSVNULunvbikOvryrrxAAA7oK1XDH/xKr6V/s3quqMJO5CDQBwF6zl3pFPS/KWqrohSSX52iQ/OWkqOApOPuH2JLfOHgFgvhy2hHX3G6vqzCTfMNv1/u7+p2ljwV338w/4+OgIAHBIq3078ru7+80H3DcySb6uqtLdr504GwDAwlptJOxhSd6cL79v5H6dRAkDALiTVvt25C/MHp+0fnEAADaGw347sqr+e1XdZ8X2favqv04bCwBgsa3lEhXndfeXVjh39z8mefR0kQAAFt9aStimqrr7/o2qukeSu69y/pdU1blV9YGq2l1VlxzinB+squuq6tqqesXaYgMAHNvWcp2w30/yp1X10tn2k5Ic9qbeVbUpyaVJHpVkT5Krqmpnd1+34pwzkzwzyTnd/Y9V9VVH+g8AAHAsWst1wn65qt6T5BGzXb/U3Veu4bXPTrK7u29Ikqp6VZILkly34pwnJ7l0NsWZ7r75SMIDAByr1jISlu5+Q5I3HOFrn5LkphXbe5J82wHnfH2SVNXbkmxK8ovd/cYDX6iqLkpyUZLc7373O8IYAADzZy3fjnxIVV1VVZ+uqi9U1W1V9cmj9P6bk5yZ5OFJLkzyWyu/iblfd1/W3du6e9uWLVuO0lsDAIyzlpGwX0/y+CSvSbItyY9kNoJ1GHuTnLZi+9TZvpX2JHlHd38xyQer6m+zXMquWsPrA3Nm+/btWVpaytatW7Njx47RcQDm2lq+HZnu3p1kU3ff1t0vTXLuGn7tqiRnVtUZVXV8lovczgPO+cMsj4Klqk7Ocrm7YY3ZgTmztLSUvXv3ZmlpaXQUgLm3lpGwz85K1DVVtSPJR7KG8tbdt1bVxUmuzPJ6r5d097VV9dwku7p75+zY91TVdUluS/KM7v7onf2HAQA4VqylhD0xy6Xr4iRPy/IU4/ev5cW7+4okVxyw79krnneSp89+AAA2jLVcouLG2dPPJ3nOtHEAADaGNV2iApg/57zwnNER7uD4jx+f43Jcbvr4TXOV720//bbREQDuYE0L8wEAOLrWXMKq6p5TBgEA2EjWcrHW75h9e/H9s+1vrqoXTZ4MAGCBrWUk7FeS/LskH02S7n53kodOGQoAYNGt9d6RN1XVyl23TRMHOJb1PTu35/b0PXt0FIC5t5YSdlNVfUeSrqq7JXlqkuunjQUci754zhdHRwA4ZqxlOvKnkjwlySlZvvfjA2fbAADcSWu5WOstSf7jOmQBANgwDlnCquqFSQ65sKO7f2aSRAAAG8BqI2G71i0FAMAGc8gS1t0vX88gAAAbyWrTkb/a3T9bVa/PQaYlu/v8SZMBACyw1aYjf3f2+Pz1CAIAsJGsNh159ezpA7v7f648VlVPTfLWKYMBACyytVwn7EcPsu/HjnIOAIANZbU1YRcm+eEkZ1TVzhWHTkrysamDAQAsstXWhP1Vko8kOTnJC1bs/1SS90wZCgBg0a22JuzGJDcm+fb1iwPAkdi+fXuWlpaydevW7NixY3Qc4Agcdk1YVT2kqq6qqk9X1Req6raq+uR6hANgdUtLS9m7d2+WlpZGRwGO0FoW5v96kguT/L8k90jyE0kunTIUAMCiO+wNvJOku3dX1abuvi3JS6vqXUmeOW00AIDFnXZfSwn7bFUdn+SaqtqR5cX6axlBAwC4y/ZPuy+atZSwJybZlOTiJE9LclqS758yFMA8eutDHzY6wh18bvOmpCqf27NnrvI97M9dzxsO57AlbPYtyST5XJLnTBsHAGBjWO1ire/NQW7cvV93P2CSRAAAG8BqI2GPWbcUAAAbzOEu1pokqaqvTvKts82/6e6bpw4GwOHdp/vLHoFjx2HXhFXVDyZ5XpK3JKkkL6yqZ3T35RNnA+AwnnDb7aMjAHfSWr4d+awk37p/9KuqtiT5kyRKGADAnbSW630dd8D040fX+HsAABzCWkbC3lhVVyZ55Wz7h5JcMV0kAIDFt5brhD2jqh6b5Dtnuy7r7tdNGwsAYLGtZWH+05P8QXe/dh3yAABsCGtZ23VSkjdV1V9U1cWzy1UAAHAXHLaEdfdzuvsbkzwlydckeWtV/cnkyQAAFtiRfMvx5iRLWf525FdNEwcAYGM4bAmrqv9cVW9J8qdJvjLJk903EgDgrlnLJSpOS/Kz3X3N1GEAADaKtVyi4pnrEQQAYCNx5XsAgAGUMACAAdayJgwAmNm+fXuWlpaydevW7NixY3QcjmFKGAAcgaWlpezdu3d0DBaAEgYAfMl/e8LjRke4g4/d/Inlx6WPzFW+Z/3e5Xfp960JAwAYQAkDABhg0hJWVedW1QeqandVXbLKed9fVV1V26bMAwAwLyYrYVW1KcmlSc5LclaSC6vqrIOcd1KSpyZ5x1RZAADmzZQL889Osru7b0iSqnpVkguSXHfAeb+U5JeTPGPCLAAcg379514/OsIdfPyWz3zpcZ7yXfyC7xsdgSM05XTkKUluWrG9Z7bvS6rqwUlO6+7/s9oLVdVFVbWrqnbt27fv6CcFAFhnwxbmV9VxSf5Hkp873LndfVl3b+vubVu2bJk+HADAxKYsYXuTnLZi+9TZvv1OSvJNSd5SVR9K8pAkOy3OBwA2gilL2FVJzqyqM6rq+CSPT7Jz/8Hu/kR3n9zdp3f36UnenuT87t41YSYAgLkwWQnr7luTXJzkyiTXJ3l1d19bVc+tqvOnel8AgGPBpLct6u4rklxxwL5nH+Lch0+ZBQBgnrh3JAAcgROPv9eXPcKdpYQBwBE45+seOzoCC8K9IwEABlDCAAAGUMIAAAawJgwAmGsnbDruyx4XhRIGAMy1B33lSaMjTGKxKiUAwDFCCQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGGDSElZV51bVB6pqd1VdcpDjT6+q66rqPVX1p1X1tVPmAQCYF5OVsKralOTSJOclOSvJhVV11gGnvSvJtu5+QJLLk+yYKg8AwDyZciTs7CS7u/uG7v5CklcluWDlCd39Z9392dnm25OcOmEeAIC5MWUJOyXJTSu298z2HcqPJ3nDwQ5U1UVVtauqdu3bt+8oRgQAGGMuFuZX1ROSbEvyvIMd7+7Luntbd2/bsmXL+oYDAJjA5glfe2+S01Zsnzrb92Wq6pFJnpXkYd39TxPmAQCYG1OOhF2V5MyqOqOqjk/y+CQ7V55QVQ9K8r+SnN/dN0+YBQBgrkxWwrr71iQXJ7kyyfVJXt3d11bVc6vq/Nlpz0vyL5K8pqquqaqdh3g5AICFMuV0ZLr7iiRXHLDv2SueP3LK9wcAmFdzsTAfAGCjUcIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAaYtIRV1blV9YGq2l1Vlxzk+N2r6g9mx99RVadPmQcAYF5MVsKqalOSS5Ocl+SsJBdW1VkHnPbjSf6xu/91kl9J8stT5QEAmCdTjoSdnWR3d9/Q3V9I8qokFxxwzgVJXj57fnmSR1RVTZgJAGAuTFnCTkly04rtPbN9Bz2nu29N8okkXzlhJgCAuVDdPc0LVz0uybnd/ROz7Scm+bbuvnjFOe+bnbNntv13s3NuOeC1Lkpy0Wzz/kk+MEno6Z2c5JbDnsXR5DNffz7z9eczX38+8/V3rH7mX9vdWw52YPOEb7o3yWkrtk+d7TvYOXuqanOSeyf56IEv1N2XJblsopzrpqp2dfe20Tk2Ep/5+vOZrz+f+frzma+/RfzMp5yOvCrJmVV1RlUdn+TxSXYecM7OJD86e/64JG/uqYbmAADmyGQjYd19a1VdnOTKJJuSvKS7r62q5ybZ1d07k/x2kt+tqt1JPpblogYAsPCmnI5Md1+R5IoD9j17xfPPJ/mBKTPMmWN+SvUY5DNffz7z9eczX38+8/W3cJ/5ZAvzAQA4NLctAgAYQAmbWFWdUFV/U1Xvrqprq+o5ozNtFFW1qareVVV/PDrLRlBVH6qq91bVNVW1a3SejaCq7lNVl1fV+6vq+qr69tGZFllV3X/27/f+n09W1c+OzrXoqupps/9/vq+qXllVJ4zOdLSYjpzY7A4AJ3b3p6vqbkn+MslTu/vtg6MtvKp6epJtSe7V3Y8ZnWfRVdWHkmw78Dp/TKeqXp7kL7r7xbNvod+zuz8+OtdGMLs1394sX9vyxtF5FlVVnZLl/2+e1d2fq6pXJ7miu182NtnRYSRsYr3s07PNu81+NN+JVdWpSb43yYtHZ4EpVNW9kzw0y98yT3d/QQFbV49I8ncK2LrYnOQes+uJ3jPJ3w/Oc9QoYetgNi12TZKbk/zf7n7H6EwbwK8m2Z7k9tFBNpBO8qaqunp2lwumdUaSfUleOpt2f3FVnTg61Aby+CSvHB1i0XX33iTPT/LhJB9J8onuftPYVEePErYOuvu27n5glu8acHZVfdPoTIusqh6T5Obuvnp0lg3mO7v7wUnOS/KUqnro6EALbnOSByf5je5+UJLPJLlkbKSNYTb1e36S14zOsuiq6r5JLsjyHx3/MsmJVfWEsamOHiVsHc2mCv4sybmjsyy4c5KcP1uj9Kok311Vvzc20uKb/cWa7r45yeuSnD020cLbk2TPipH1y7NcypjeeUne2d3/MDrIBvDIJB/s7n3d/cUkr03yHYMzHTVK2MSqaktV3Wf2/B5JHpXk/WNTLbbufmZ3n9rdp2d5yuDN3b0wfznNo6o6sapO2v88yfcked/YVIutu5eS3FRV95/tekSS6wZG2kgujKnI9fLhJA+pqnvOvuj2iCTXD8501Ex6xXySJF+T5OWzb9Icl+TV3e2SCSyar07yuuX/RmZzkld09xvHRtoQfjrJ78+mx25I8qTBeRbe7I+MRyX5ydFZNoLufkdVXZ7knUluTfKuLNCV812iAgBgANORAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAzVXV6Vb1v9nxbVf3a7PnDq2phLhAJzAfXCQM4iO7elWTXbPPhST6d5K+GBQIWjpEwYCFU1bOq6m+r6i+r6pVV9fNV9Zaq2jY7fvLsVlb7R7z+oqreOfu5wyjXbPTrj6vq9CQ/leRpVXVNVX1XVX2wqu42O+9eK7cB1spIGHDMq6pvyfItqh6Y5f+uvTPJajdwvznJo7r781V1ZpZvQbPtYCd294eq6jeTfLq7nz97v7ck+d4kfzh739fO7msHsGZGwoBF8F1JXtfdn+3uTybZeZjz75bkt6rqvUlek+SsI3y/F+efbxH0pCQvPcLfBzASBiy0W/PPf2yesGL/05L8Q5Jvnh3//JG8aHe/bTal+fAkm7rbzcqBI2YkDFgEf57k31fVParqpCTfN9v/oSTfMnv+uBXn3zvJR7r79iRPTLLpMK//qSQnHbDvd5K8IkbBgDtJCQOOed39ziR/kOTdSd6Q5KrZoecn+U9V9a4kJ6/4lRcl+dGqeneSb0jymcO8xeuT/If9C/Nn+34/yX2zvJ4M4IhVd4/OAHBUVdUvZsVC+one43FJLujuJ071HsBisyYM4AhV1QuTnJfk0aOzAMcuI2EAAANYEwYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADDA/wf6N46jVdGylQAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": [],
- "needs_background": "light"
- }
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "ftWOC-do2Pq-"
- },
- "source": [
- "# 4. Normalizacja"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "Wm0EM2hj4s6V"
- },
- "source": [
- "Normalizacja kolumny 'quality' na wartości od 0 do 20. Nie jest ona konieczna ale została stworzona w celach demonstracyjnych"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "EkZQ6Hpy2Tj_"
- },
- "source": [
- "wine[\"quality\"]=((wine[\"quality\"]-wine[\"quality\"].min())/(wine[\"quality\"].max()-wine[\"quality\"].min()))*20"
- ],
- "execution_count": 19,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 419
- },
- "id": "_bQgYfct3Tir",
- "outputId": "24dd9365-4398-4556-8c1b-ac78ef515718"
- },
- "source": [
- "wine"
- ],
- "execution_count": 20,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " fixed acidity | \n",
- " volatile acidity | \n",
- " citric acid | \n",
- " residual sugar | \n",
- " chlorides | \n",
- " free sulfur dioxide | \n",
- " total sulfur dioxide | \n",
- " density | \n",
- " pH | \n",
- " sulphates | \n",
- " alcohol | \n",
- " quality | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 7.4 | \n",
- " 0.700 | \n",
- " 0.00 | \n",
- " 1.9 | \n",
- " 0.076 | \n",
- " 11.0 | \n",
- " 34.0 | \n",
- " 0.99780 | \n",
- " 3.51 | \n",
- " 0.56 | \n",
- " 9.4 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 7.8 | \n",
- " 0.880 | \n",
- " 0.00 | \n",
- " 2.6 | \n",
- " 0.098 | \n",
- " 25.0 | \n",
- " 67.0 | \n",
- " 0.99680 | \n",
- " 3.20 | \n",
- " 0.68 | \n",
- " 9.8 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 7.8 | \n",
- " 0.760 | \n",
- " 0.04 | \n",
- " 2.3 | \n",
- " 0.092 | \n",
- " 15.0 | \n",
- " 54.0 | \n",
- " 0.99700 | \n",
- " 3.26 | \n",
- " 0.65 | \n",
- " 9.8 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 11.2 | \n",
- " 0.280 | \n",
- " 0.56 | \n",
- " 1.9 | \n",
- " 0.075 | \n",
- " 17.0 | \n",
- " 60.0 | \n",
- " 0.99800 | \n",
- " 3.16 | \n",
- " 0.58 | \n",
- " 9.8 | \n",
- " 12.0 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 7.4 | \n",
- " 0.700 | \n",
- " 0.00 | \n",
- " 1.9 | \n",
- " 0.076 | \n",
- " 11.0 | \n",
- " 34.0 | \n",
- " 0.99780 | \n",
- " 3.51 | \n",
- " 0.56 | \n",
- " 9.4 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 1594 | \n",
- " 6.2 | \n",
- " 0.600 | \n",
- " 0.08 | \n",
- " 2.0 | \n",
- " 0.090 | \n",
- " 32.0 | \n",
- " 44.0 | \n",
- " 0.99490 | \n",
- " 3.45 | \n",
- " 0.58 | \n",
- " 10.5 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " 1595 | \n",
- " 5.9 | \n",
- " 0.550 | \n",
- " 0.10 | \n",
- " 2.2 | \n",
- " 0.062 | \n",
- " 39.0 | \n",
- " 51.0 | \n",
- " 0.99512 | \n",
- " 3.52 | \n",
- " 0.76 | \n",
- " 11.2 | \n",
- " 12.0 | \n",
- "
\n",
- " \n",
- " 1596 | \n",
- " 6.3 | \n",
- " 0.510 | \n",
- " 0.13 | \n",
- " 2.3 | \n",
- " 0.076 | \n",
- " 29.0 | \n",
- " 40.0 | \n",
- " 0.99574 | \n",
- " 3.42 | \n",
- " 0.75 | \n",
- " 11.0 | \n",
- " 12.0 | \n",
- "
\n",
- " \n",
- " 1597 | \n",
- " 5.9 | \n",
- " 0.645 | \n",
- " 0.12 | \n",
- " 2.0 | \n",
- " 0.075 | \n",
- " 32.0 | \n",
- " 44.0 | \n",
- " 0.99547 | \n",
- " 3.57 | \n",
- " 0.71 | \n",
- " 10.2 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " 1598 | \n",
- " 6.0 | \n",
- " 0.310 | \n",
- " 0.47 | \n",
- " 3.6 | \n",
- " 0.067 | \n",
- " 18.0 | \n",
- " 42.0 | \n",
- " 0.99549 | \n",
- " 3.39 | \n",
- " 0.66 | \n",
- " 11.0 | \n",
- " 12.0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
1599 rows × 12 columns
\n",
- "
"
- ],
- "text/plain": [
- " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n",
- "0 7.4 0.700 0.00 ... 0.56 9.4 8.0\n",
- "1 7.8 0.880 0.00 ... 0.68 9.8 8.0\n",
- "2 7.8 0.760 0.04 ... 0.65 9.8 8.0\n",
- "3 11.2 0.280 0.56 ... 0.58 9.8 12.0\n",
- "4 7.4 0.700 0.00 ... 0.56 9.4 8.0\n",
- "... ... ... ... ... ... ... ...\n",
- "1594 6.2 0.600 0.08 ... 0.58 10.5 8.0\n",
- "1595 5.9 0.550 0.10 ... 0.76 11.2 12.0\n",
- "1596 6.3 0.510 0.13 ... 0.75 11.0 12.0\n",
- "1597 5.9 0.645 0.12 ... 0.71 10.2 8.0\n",
- "1598 6.0 0.310 0.47 ... 0.66 11.0 12.0\n",
- "\n",
- "[1599 rows x 12 columns]"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 20
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "I1AwZoyN4RHs",
- "outputId": "490528b2-44c0-41c1-ae79-cee03f40740d"
- },
- "source": [
- "wine[\"quality\"].value_counts()"
- ],
- "execution_count": 21,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "8.0 681\n",
- "12.0 638\n",
- "16.0 199\n",
- "4.0 53\n",
- "20.0 18\n",
- "0.0 10\n",
- "Name: quality, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 21
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "XBU3z_of414w"
- },
- "source": [
- "# 5. Usuwanie artefaktów"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "KCstRwQp5-X1"
- },
- "source": [
- "### Całe szczęscie nie ma w moim zbiorze ani pustych linijek, ani przykładów z niepoprawnymi wartościami"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "EJqksTP545UV"
- },
- "source": [
- "# Znajdźmy pustą linijkę:\n",
- "! grep -P \"^$\" -n winequality-red.csv"
- ],
- "execution_count": 22,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "8DuoPn3Fa0kP"
- },
- "source": [
- "Szukanie wartości \"NA\": https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "REYF2AWjz_lr",
- "outputId": "ac466088-829e-4b5a-88b4-b657c91a8de0"
- },
- "source": [
- "wine.isnull().sum()"
- ],
- "execution_count": 23,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "fixed acidity 0\n",
- "volatile acidity 0\n",
- "citric acid 0\n",
- "residual sugar 0\n",
- "chlorides 0\n",
- "free sulfur dioxide 0\n",
- "total sulfur dioxide 0\n",
- "density 0\n",
- "pH 0\n",
- "sulphates 0\n",
- "alcohol 0\n",
- "quality 0\n",
- "dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 23
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "RbkqNj9_akcU"
- },
- "source": [
- "wine.dropna(inplace=True) "
- ],
- "execution_count": 24,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 419
- },
- "id": "4WylJo9malyG",
- "outputId": "b830d411-939e-4429-df7b-92672165cf2d"
- },
- "source": [
- "wine"
- ],
- "execution_count": 25,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " fixed acidity | \n",
- " volatile acidity | \n",
- " citric acid | \n",
- " residual sugar | \n",
- " chlorides | \n",
- " free sulfur dioxide | \n",
- " total sulfur dioxide | \n",
- " density | \n",
- " pH | \n",
- " sulphates | \n",
- " alcohol | \n",
- " quality | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 7.4 | \n",
- " 0.700 | \n",
- " 0.00 | \n",
- " 1.9 | \n",
- " 0.076 | \n",
- " 11.0 | \n",
- " 34.0 | \n",
- " 0.99780 | \n",
- " 3.51 | \n",
- " 0.56 | \n",
- " 9.4 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 7.8 | \n",
- " 0.880 | \n",
- " 0.00 | \n",
- " 2.6 | \n",
- " 0.098 | \n",
- " 25.0 | \n",
- " 67.0 | \n",
- " 0.99680 | \n",
- " 3.20 | \n",
- " 0.68 | \n",
- " 9.8 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 7.8 | \n",
- " 0.760 | \n",
- " 0.04 | \n",
- " 2.3 | \n",
- " 0.092 | \n",
- " 15.0 | \n",
- " 54.0 | \n",
- " 0.99700 | \n",
- " 3.26 | \n",
- " 0.65 | \n",
- " 9.8 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 11.2 | \n",
- " 0.280 | \n",
- " 0.56 | \n",
- " 1.9 | \n",
- " 0.075 | \n",
- " 17.0 | \n",
- " 60.0 | \n",
- " 0.99800 | \n",
- " 3.16 | \n",
- " 0.58 | \n",
- " 9.8 | \n",
- " 12.0 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 7.4 | \n",
- " 0.700 | \n",
- " 0.00 | \n",
- " 1.9 | \n",
- " 0.076 | \n",
- " 11.0 | \n",
- " 34.0 | \n",
- " 0.99780 | \n",
- " 3.51 | \n",
- " 0.56 | \n",
- " 9.4 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 1594 | \n",
- " 6.2 | \n",
- " 0.600 | \n",
- " 0.08 | \n",
- " 2.0 | \n",
- " 0.090 | \n",
- " 32.0 | \n",
- " 44.0 | \n",
- " 0.99490 | \n",
- " 3.45 | \n",
- " 0.58 | \n",
- " 10.5 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " 1595 | \n",
- " 5.9 | \n",
- " 0.550 | \n",
- " 0.10 | \n",
- " 2.2 | \n",
- " 0.062 | \n",
- " 39.0 | \n",
- " 51.0 | \n",
- " 0.99512 | \n",
- " 3.52 | \n",
- " 0.76 | \n",
- " 11.2 | \n",
- " 12.0 | \n",
- "
\n",
- " \n",
- " 1596 | \n",
- " 6.3 | \n",
- " 0.510 | \n",
- " 0.13 | \n",
- " 2.3 | \n",
- " 0.076 | \n",
- " 29.0 | \n",
- " 40.0 | \n",
- " 0.99574 | \n",
- " 3.42 | \n",
- " 0.75 | \n",
- " 11.0 | \n",
- " 12.0 | \n",
- "
\n",
- " \n",
- " 1597 | \n",
- " 5.9 | \n",
- " 0.645 | \n",
- " 0.12 | \n",
- " 2.0 | \n",
- " 0.075 | \n",
- " 32.0 | \n",
- " 44.0 | \n",
- " 0.99547 | \n",
- " 3.57 | \n",
- " 0.71 | \n",
- " 10.2 | \n",
- " 8.0 | \n",
- "
\n",
- " \n",
- " 1598 | \n",
- " 6.0 | \n",
- " 0.310 | \n",
- " 0.47 | \n",
- " 3.6 | \n",
- " 0.067 | \n",
- " 18.0 | \n",
- " 42.0 | \n",
- " 0.99549 | \n",
- " 3.39 | \n",
- " 0.66 | \n",
- " 11.0 | \n",
- " 12.0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
1599 rows × 12 columns
\n",
- "
"
- ],
- "text/plain": [
- " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n",
- "0 7.4 0.700 0.00 ... 0.56 9.4 8.0\n",
- "1 7.8 0.880 0.00 ... 0.68 9.8 8.0\n",
- "2 7.8 0.760 0.04 ... 0.65 9.8 8.0\n",
- "3 11.2 0.280 0.56 ... 0.58 9.8 12.0\n",
- "4 7.4 0.700 0.00 ... 0.56 9.4 8.0\n",
- "... ... ... ... ... ... ... ...\n",
- "1594 6.2 0.600 0.08 ... 0.58 10.5 8.0\n",
- "1595 5.9 0.550 0.10 ... 0.76 11.2 12.0\n",
- "1596 6.3 0.510 0.13 ... 0.75 11.0 12.0\n",
- "1597 5.9 0.645 0.12 ... 0.71 10.2 8.0\n",
- "1598 6.0 0.310 0.47 ... 0.66 11.0 12.0\n",
- "\n",
- "[1599 rows x 12 columns]"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 25
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "5WvWtALhayKM"
- },
- "source": [
- ""
- ],
- "execution_count": null,
- "outputs": []
- }
- ]
-}
\ No newline at end of file