from mlflow.tracking import MlflowClient import mlflow import pandas as pd mlflow.set_tracking_uri("http://172.17.0.1:5000") client = MlflowClient() version = "c579d6" model_name = "s434788" #for mv in client.search_model_versions(f"name='{model_name}'"): # if int(mv.version) > version: # version = int(mv.version) model = mlflow.keras.load_model( model_uri=f"models:/{model_name}/{version}" ) data = pd.read_json('my_model/input_example.json', orient='split') print(data) print(model.predict(data))