from tensorflow.keras.models import Sequential, load_model from tensorflow.keras.layers import Dense from sklearn.metrics import accuracy_score, classification_report import pandas as pd from sklearn.model_selection import train_test_split import numpy as np import sys from sklearn.preprocessing import StandardScaler, LabelEncoder from tensorflow.keras.optimizers import Adam from datetime import datetime import os import sys import mlflow with mlflow.start_run(): batch_param = int(sys.argv[1]) if len(sys.argv) > 1 else 16 epoch_param = int(sys.argv[2]) if len(sys.argv) > 2 else 5 #mlflow.log_param("batch_size: ", batch_param) #mlflow.log_param("epochs: ", epoch_param) wine=pd.read_csv('train.csv') y = wine['quality'] x = wine.drop('quality', axis=1) citricacid = x['fixed acidity'] * x['citric acid'] citric_acidity = pd.DataFrame(citricacid, columns=['citric_accidity']) density_acidity = x['fixed acidity'] * x['density'] density_acidity = pd.DataFrame(density_acidity, columns=['density_acidity']) x = wine.join(citric_acidity).join(density_acidity) bins = (2, 5, 8) gnames = ['bad', 'nice'] y = pd.cut(y, bins = bins, labels = gnames) enc = LabelEncoder() yenc = enc.fit_transform(y) scale = StandardScaler() scaled_x = scale.fit_transform(x) NeuralModel = Sequential([ Dense(128, activation='relu', input_shape=(14,)), Dense(32, activation='relu'), Dense(64, activation='relu'), Dense(64, activation='relu'), Dense(64, activation='relu'), Dense(1, activation='sigmoid') ]) rms = Adam(lr=0.0003) NeuralModel.compile(optimizer=rms, loss='binary_crossentropy', metrics=['accuracy']) NeuralModel.fit(scaled_x, yenc, batch_size= batch_param, epochs = epoch_param) #verbose = 1 #TO TYLKO NA POTRZEBY ZADANIA y_pred = NeuralModel.predict(scaled_x) y_pred = np.around(y_pred, decimals=0) results = accuracy_score(yenc,y_pred) #mlflow.log_metric("Accuracy: ", results)