pipeline { agent { docker { image 'snowycocoon/ium_434788:4' args '-v /tmp/mlruns:/tmp/mlruns -v /mlruns:/mlruns' } } parameters{ buildSelector( defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'WHICH_BUILD' ) string( defaultValue: '16', description: 'batch size', name: 'BATCH_SIZE' ) string( defaultValue: '15', description: 'epochs', name: 'EPOCHS' ) } stages { stage('copy artifacts') { steps { copyArtifacts(fingerprintArtifacts: true, projectName: 's434788-create-dataset', selector: buildParameter('WHICH_BUILD')) } } stage('train') { steps { catchError { sh 'rm -r my_model' sh 'rm -r model' sh 'python3.8 Zadanie_08_and_09_MLflow.py ${BATCH_SIZE} ${EPOCHS}' } } } stage('Archive artifacts') { steps{ archiveArtifacts 'my_model/**/*' } } } post { success { mail body: 'SUCCESS', subject: 's434788 mlflow training', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms' } unstable { mail body: 'UNSTABLE', subject: 's434788 mlflow training', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms' } failure { mail body: 'FAILURE', subject: 's434788 mlflow training', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms' } changed { mail body: 'CHANGED', subject: 's434788 mlflow training', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms' } } }