import pandas as pd import numpy as np from os import path from tensorflow import keras import sys import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score, classification_report model = keras.models.load_model('wine_model.h5') print('evaluating') test_df =pd.read_csv('test.csv') y_test = test_df.quality x_test = test_df.drop(['quality'], axis= 1) x_test=((x_test-x_test.min())/(x_test.max()-x_test.min())) #Normalizacja y_pred = model.predict(x_test) y_pred = np.around(y_pred, decimals=0) results = accuracy_score(y_test,y_pred) with open('results.txt', 'a+', encoding="UTF-8") as f: f.write(str(results) +"\n") with open('results.txt', 'r', encoding="UTF-8") as f: lines = f.readlines() fig = plt.figure(figsize=(10,10)) chart = fig.add_subplot() chart.set_ylabel("Accuracy") chart.set_xlabel("Number of build") x = np.arange(0, len(lines), 1) y = [float(x) for x in lines] print(y) plt.plot(x,y,"ro") plt.savefig("evaluation.png")