{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "IUM_1_434788.ipynb", "provenance": [], "collapsed_sections": [], "toc_visible": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "shaFKPEixPn4" }, "source": [ "# 1. Pobranie zbioru danych z Repozytorium" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-03GDjWtxD7W", "outputId": "3cefd33d-3ef4-4c16-963e-ffa6e9e781de" }, "source": [ "!curl -OL https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv" ], "execution_count": 1, "outputs": [ { "output_type": "stream", "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", "100 98k 0 98k 0 0 74502 0 --:--:-- 0:00:01 --:--:-- 74502\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 419 }, "id": "sAUNi0ylxWUm", "outputId": "fe879388-072d-4845-f3b5-f06a4fca5f1e" }, "source": [ "import pandas as pd\n", "wine=pd.read_csv('winequality-red.csv')\n", "wine" ], "execution_count": 2, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
07.40.7000.001.90.07611.034.00.997803.510.569.45
17.80.8800.002.60.09825.067.00.996803.200.689.85
27.80.7600.042.30.09215.054.00.997003.260.659.85
311.20.2800.561.90.07517.060.00.998003.160.589.86
47.40.7000.001.90.07611.034.00.997803.510.569.45
.......................................
15946.20.6000.082.00.09032.044.00.994903.450.5810.55
15955.90.5500.102.20.06239.051.00.995123.520.7611.26
15966.30.5100.132.30.07629.040.00.995743.420.7511.06
15975.90.6450.122.00.07532.044.00.995473.570.7110.25
15986.00.3100.473.60.06718.042.00.995493.390.6611.06
\n", "

1599 rows × 12 columns

\n", "
" ], "text/plain": [ " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n", "0 7.4 0.700 0.00 ... 0.56 9.4 5\n", "1 7.8 0.880 0.00 ... 0.68 9.8 5\n", "2 7.8 0.760 0.04 ... 0.65 9.8 5\n", "3 11.2 0.280 0.56 ... 0.58 9.8 6\n", "4 7.4 0.700 0.00 ... 0.56 9.4 5\n", "... ... ... ... ... ... ... ...\n", "1594 6.2 0.600 0.08 ... 0.58 10.5 5\n", "1595 5.9 0.550 0.10 ... 0.76 11.2 6\n", "1596 6.3 0.510 0.13 ... 0.75 11.0 6\n", "1597 5.9 0.645 0.12 ... 0.71 10.2 5\n", "1598 6.0 0.310 0.47 ... 0.66 11.0 6\n", "\n", "[1599 rows x 12 columns]" ] }, "metadata": { "tags": [] }, "execution_count": 2 } ] }, { "cell_type": "markdown", "metadata": { "id": "4H-i6DJlxduP" }, "source": [ "# 2. Podział na zbiory test/train przy pomocy SciKit + (poprawka z 26.03.2021 przy pomocy basha)" ] }, { "cell_type": "markdown", "metadata": { "id": "Rf49qKC-eqEU" }, "source": [ "## 2.1 SciKit" ] }, { "cell_type": "markdown", "metadata": { "id": "nZO_naLatT0o" }, "source": [ "Próbowałem również podzielić na podzbiory Train:Dev:Test 6:2:2 Przy pomocy basha ale uznałem, że wygodniejsze jest korzystanie z \"train_test_split()\". Docelowo podział będzie dokonywany na 4 zmienne ` X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)`, jednak chciałem zachować konwencje z przykładu, z ćwiczeń." ] }, { "cell_type": "markdown", "metadata": { "id": "ebHl5Aw1uuK1" }, "source": [ "https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html" ] }, { "cell_type": "code", "metadata": { "id": "X88VMhb0x3gJ" }, "source": [ "from sklearn.model_selection import train_test_split\n", "\n", "wine_train, wine_test = train_test_split(wine, test_size=360,train_size=959, random_state=1)" ], "execution_count": 3, "outputs": [] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OzjEfgNOyAWs", "outputId": "7e7bb70f-2b1e-422c-9500-d411884d8d5a" }, "source": [ "wine_test[\"quality\"].value_counts()" ], "execution_count": 4, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "5 155\n", "6 149\n", "7 37\n", "4 16\n", "8 2\n", "3 1\n", "Name: quality, dtype: int64" ] }, "metadata": { "tags": [] }, "execution_count": 4 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SpQZIuSxyAd0", "outputId": "96505a9a-d2e7-44a1-b2cf-ee40d6d7d3d0" }, "source": [ "wine_train[\"quality\"].value_counts()" ], "execution_count": 5, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "5 400\n", "6 388\n", "7 125\n", "4 30\n", "8 11\n", "3 5\n", "Name: quality, dtype: int64" ] }, "metadata": { "tags": [] }, "execution_count": 5 } ] }, { "cell_type": "markdown", "metadata": { "id": "YK0491tAeupD" }, "source": [ "## 2.2 Bash" ] }, { "cell_type": "code", "metadata": { "id": "1idNUz-9eyfJ" }, "source": [ "!head -n 1 winequality-red.csv > header.csv\n", "!tail -n +2 winequality-red.csv | shuf > data.shuffled\n", "\n", "!head -n 266 data.shuffled > wine.data.test\n", "!head -n 532 data.shuffled | tail -n 266 > wine.data.dev\n", "!tail -n +333 data.shuffled > wine.data.train\n", "\n", "!cat header.csv wine.data.test > test.csv\n", "!cat header.csv wine.data.dev > dev.csv\n", "!cat header.csv wine.data.train > train.csv" ], "execution_count": 6, "outputs": [] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-C4RRDH2fFEp", "outputId": "93944a72-838c-4e2b-a907-de4b0902fcb1" }, "source": [ "!wc -l test.csv\n", "!wc -l dev.csv\n", "!wc -l train.csv" ], "execution_count": 7, "outputs": [ { "output_type": "stream", "text": [ "267 test.csv\n", "267 dev.csv\n", "1268 train.csv\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "wLlI-k_jfb70" }, "source": [ "wine_test_bash=pd.read_csv('test.csv')\n", "wine_dev_bash=pd.read_csv('dev.csv')\n", "wine_train_bash=pd.read_csv('train.csv')" ], "execution_count": 8, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "wAq8KmNdyNOm" }, "source": [ "# 3. Statystyki dla zbiorów" ] }, { "cell_type": "code", "metadata": { "id": "Wcq9YSTfXbs1" }, "source": [ "from matplotlib import pyplot as plt\n", "import seaborn as sns" ], "execution_count": 9, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "EjDFpgdPy_of" }, "source": [ "## 3.1. Zbiór Train (bash)" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 419 }, "id": "SscUak3AydG0", "outputId": "5f0bd8df-1753-4211-e3a6-8ce2685146f9" }, "source": [ "wine_train_bash" ], "execution_count": 10, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
010.00.3800.381.60.16927.090.00.999143.150.658.55
16.70.4600.241.70.07718.034.00.994803.390.6010.66
27.20.6950.132.00.07612.020.00.995463.290.5410.15
312.50.6000.494.30.1005.014.01.001003.250.7411.96
48.30.5600.222.40.08210.086.00.998303.370.629.55
.......................................
12627.80.5600.122.00.0827.028.00.997003.370.509.46
12635.80.6800.021.80.08721.094.00.994403.540.5210.05
12647.70.6300.081.90.07615.027.00.996703.320.549.56
12657.10.6000.001.80.07416.034.00.997203.470.709.96
126610.40.6100.492.10.2005.016.00.999403.160.638.43
\n", "

1267 rows × 12 columns

\n", "
" ], "text/plain": [ " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n", "0 10.0 0.380 0.38 ... 0.65 8.5 5\n", "1 6.7 0.460 0.24 ... 0.60 10.6 6\n", "2 7.2 0.695 0.13 ... 0.54 10.1 5\n", "3 12.5 0.600 0.49 ... 0.74 11.9 6\n", "4 8.3 0.560 0.22 ... 0.62 9.5 5\n", "... ... ... ... ... ... ... ...\n", "1262 7.8 0.560 0.12 ... 0.50 9.4 6\n", "1263 5.8 0.680 0.02 ... 0.52 10.0 5\n", "1264 7.7 0.630 0.08 ... 0.54 9.5 6\n", "1265 7.1 0.600 0.00 ... 0.70 9.9 6\n", "1266 10.4 0.610 0.49 ... 0.63 8.4 3\n", "\n", "[1267 rows x 12 columns]" ] }, "metadata": { "tags": [] }, "execution_count": 10 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "hZAn8j4byMF2", "outputId": "c47596aa-0d54-490f-c892-6ee5987a372d" }, "source": [ "wine_train_bash[\"quality\"].value_counts()" ], "execution_count": 11, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "5 550\n", "6 498\n", "7 157\n", "4 39\n", "8 15\n", "3 8\n", "Name: quality, dtype: int64" ] }, "metadata": { "tags": [] }, "execution_count": 11 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 297 }, "id": "EOEuj8sRyL8v", "outputId": "d2f102f6-d10c-4dc4-ae3f-fd34dc4e5985" }, "source": [ "wine_train_bash.describe(include='all')" ], "execution_count": 12, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
count1267.0000001267.0000001267.0000001267.0000001267.0000001267.0000001267.0000001267.0000001267.0000001267.0000001267.0000001267.000000
mean8.3441990.5258880.2738912.5740330.08741915.88989746.1460140.9967993.3100160.65573010.3967255.632991
std1.7892530.1778040.1961411.4534630.04675410.60367432.7348180.0018930.1540470.1662061.0423530.806931
min4.7000000.1200000.0000000.9000000.0120001.0000006.0000000.9900702.7400000.3700008.4000003.000000
25%7.1000000.3900000.0900001.9000000.0710007.00000022.0000000.9956603.2100000.5500009.5000005.000000
50%7.9000000.5200000.2600002.2000000.08000013.00000037.0000000.9968003.3100000.62000010.2000006.000000
75%9.3000000.6400000.4300002.6000000.09000022.00000062.0000000.9978703.4000000.73000011.0000006.000000
max15.9000001.5800001.00000015.5000000.61100072.000000278.0000001.0036904.0100002.00000014.9000008.000000
\n", "
" ], "text/plain": [ " fixed acidity volatile acidity ... alcohol quality\n", "count 1267.000000 1267.000000 ... 1267.000000 1267.000000\n", "mean 8.344199 0.525888 ... 10.396725 5.632991\n", "std 1.789253 0.177804 ... 1.042353 0.806931\n", "min 4.700000 0.120000 ... 8.400000 3.000000\n", "25% 7.100000 0.390000 ... 9.500000 5.000000\n", "50% 7.900000 0.520000 ... 10.200000 6.000000\n", "75% 9.300000 0.640000 ... 11.000000 6.000000\n", "max 15.900000 1.580000 ... 14.900000 8.000000\n", "\n", "[8 rows x 12 columns]" ] }, "metadata": { "tags": [] }, "execution_count": 12 } ] }, { "cell_type": "markdown", "metadata": { "id": "JWXJ2CZQuylE" }, "source": [ "Testowy Wykres (quality, volatile acidity)" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 408 }, "id": "HbsfwCL7XpNe", "outputId": "249d8110-1b17-41ad-e1b1-18b0aa12ff06" }, "source": [ "fig = plt.figure(figsize = (10,6))\n", "sns.barplot(x = 'quality', y = 'volatile acidity', data = wine_train_bash)" ], "execution_count": 13, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": { "tags": [] }, "execution_count": 13 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAF2CAYAAAAmzk/1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZiklEQVR4nO3dfbRlZ10f8O8vk4SENBDKjEbzYlIbsaki4JiiQUgFNEFMWkQlCigLiLZEEZRZuGijoO2qI9YXDNqIvKiYACnoYIOxFQEFwUwgvISAjuElM3LJhBjeMST59Y97Rm+GmTt3wuz73Dn381nrrnP23s8955uzspLv3c9z9q7uDgAAq+uI0QEAANYjJQwAYAAlDABgACUMAGAAJQwAYAAlDABggMlKWFW9tKpurqr37ef4D1XVe6rqvVX1tqr6pqmyAACsNVOeCXt5knOXOf6hJI/o7m9M8vNJLpswCwDAmnLkVC/c3W+pqtOWOf62JZtvT3LyVFkAANaayUrYQXpqkjesZODGjRv7tNNOmzYNAMAhcO21197S3Zv2dWx4Cauqf5/FEvawZcZclOSiJDn11FOzffv2VUoHAHDPVdVH9nds6Lcjq+qBSV6S5ILu/sT+xnX3Zd29ubs3b9q0zzIJAHBYGVbCqurUJK9N8qTu/ptROQAARphsOrKqLk9yTpKNVbUzyc8mOSpJuvu3klyS5P5JXlxVSXJHd2+eKg8AwFoy5bcjLzzA8acledpU7w8AsJa5Yj4AwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAMNv4L1ebNmyJQsLCznxxBOzdevW0XEAgMGUsFWysLCQXbt2jY4BAKwRpiMBAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABpishFXVS6vq5qp6336OV1X9elXtqKr3VNVDpsoCALDWTHkm7OVJzl3m+HlJzpj9XJTkNyfMAgCwpkxWwrr7LUluXWbIBUl+txe9PckJVfVVU+UBAFhLRq4JOynJTUu2d872AQDMvcNiYX5VXVRV26tq++7du0fHAQD4so0sYbuSnLJk++TZvi/R3Zd19+bu3rxp06ZVCQcAMKWRJWxbkifPviX50CSf7O6PDcwDALBqjpzqhavq8iTnJNlYVTuT/GySo5Kku38ryVVJHpNkR5LPJXnKVFkAANaayUpYd194gOOd5BlTvT8AwFp2WCzMBwCYN0oYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAR44OMJVvfs7vjo5wN8ff8ulsSPLRWz69prJd+0tPHh0BANYlZ8IAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAaYtIRV1blV9cGq2lFVz93H8VOr6s+r6l1V9Z6qesyUeQAA1orJSlhVbUhyaZLzkpyZ5MKqOnOvYf8lyau7+8FJnpDkxVPlAQBYS6Y8E3ZWkh3dfWN3357kiiQX7DWmk9xn9vy+Sf5+wjwAAGvGlCXspCQ3LdneOdu31M8leWJV7UxyVZIf39cLVdVFVbW9qrbv3r17iqwAAKtq9ML8C5O8vLtPTvKYJL9XVV+Sqbsv6+7N3b1506ZNqx4SAOBQm7KE7UpyypLtk2f7lnpqklcnSXf/VZJjkmycMBMAwJowZQm7JskZVXV6VR2dxYX32/Ya89Ekj0ySqvo3WSxh5hsBgLk3WQnr7juSXJzk6iQ3ZPFbkNdX1Quq6vzZsJ9K8vSqeneSy5P8SHf3VJkAANaKI6d88e6+KosL7pfuu2TJ8/cnOXvKDAAAa9HohfkAAOuSEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADDAAUtYVV1bVc+oqvutRiAAgPVgJWfCfiDJVye5pqquqKrvqqqaONfcuevo43Lnve6Tu44+bnQUAGANOPJAA7p7R5LnVdV/TfLYJC9NcmdVvSzJr3X3rRNnnAufPeM7R0dYd7Zs2ZKFhYWceOKJ2bp16+g4AHA3ByxhSVJVD0zylCSPSfK/k7wyycOSvDHJgyZLB1+GhYWF7Nq1a3QMANinA5awqro2yW1JfifJc7v7H2eH3lFVZ08ZDgBgXq3kTNj3dfeNS3dU1end/aHuftxEuQAA5tpKFuZfucJ9AACs0H7PhFXV1yf5t0nuW1VLz3jdJ8kxUwcDAJhny01HPiCL34Y8Icn3LNn/6SRPnzIUAMC8228J6+4/SvJHVfWt3f1Xq5gJAGDuLTcduaW7tyb5waq6cO/j3f0TkyYDAJhjy01H3jB73L4aQQAA1pPlpiNfP3t8xerFAQBYH5abjnx9kt7f8e4+f5JEAADrwHLTkS+cPT4uyYlJfn+2fWGSj08ZCgBg3i03HfnmJKmqX+7uzUsOvb6qrBMDAPgyrOSK+cdV1b/as1FVpyc5brpIAADzbyX3jnxWkjdV1Y1JKsnXJPnRSVMBAMy5A5aw7v6TqjojydfPdn2gu/9x2lgAAPNtuW9Hfkd3v3Gv+0YmyddWVbr7tRNn4zDz0Rd84+gId3PHrf8yyZG549aPrKlsp17y3tERAFgDljsT9ogkb8zd7xu5RydRwgAA7qHlvh35s7PHp6xeHACA9eGA346sqv9eVScs2b5fVf3CtLEAAObbSi5RcV5337Zno7v/IcljposEADD/VlLCNlTVvfZsVNWxSe61zHgAAA5gJdcJe2WSP6uql822n5LETb0BAL4MK7lO2C9W1XuSPHK26+e7++ppYwEAzLeVnAlLd78hyRsmzgIAsG6s5NuRD62qa6rqM1V1e1XdWVWfWo1wAADzaiUL838jyYVJ/jbJsUmeluTSKUMBAMy7lZSwdPeOJBu6+87uflmSc6eNBQAw31ayJuxzVXV0kuuqamuSj2WF5Q0AgH1bSZl60mzcxUk+m+SUJN+7khevqnOr6oNVtaOqnrufMd9fVe+vquur6g9WGhwA4HC2kktUfGT29AtJnr/SF66qDVlcO/boJDuTXFNV27r7/UvGnJHkZ5Kc3d3/UFVfcTDhAQAOV1NOK56VZEd339jdtye5IskFe415epJLZ7dCSnffPGEeAIA1Y8oSdlKSm5Zs75ztW+rrknxdVb21qt5eVftc8F9VF1XV9qravnv37oniAgCsnhWXsKq69wTvf2SSM5Kck8XLYPx2VZ2w96Duvqy7N3f35k2bNk0QAwBgda3kYq3fVlXvT/KB2fY3VdWLV/Dau7K4iH+Pk2f7ltqZZFt3f7G7P5Tkb7JYygAA5tpKzoT9SpLvSvKJJOnudyd5+Ap+75okZ1TV6bNLXDwhyba9xvxhFs+Cpao2ZnF68sYVJYcD2HjMXfnKY+/IxmPuGh1l3diyZUue/OQnZ8uWLaOjAKx5K7135E1VtXTXnSv4nTuq6uIkVyfZkOSl3X19Vb0gyfbu3jY79p2zM213JnlOd3/iYP8hYF9++oG3jY6w7iwsLGTXrr1PeAOwLyspYTdV1bcl6ao6Kskzk9ywkhfv7quSXLXXvkuWPO8kz579AACsGyuZjvyxJM/I4jcbdyV50GwbAIB7aCUXa70lyQ+tQhbgIJ39orNHR7ibo287OkfkiNx0201rKttbf/ytoyMAfIn9lrCqelGS3t/x7v6JSRIBAKwDy50J275qKQAA1pn9lrDufsVqBgEAWE+Wm4781e7+yap6ffYxLdnd50+aDABgji03Hfl7s8cXrkYQ4PDX9+7clbvS997vclIAZpabjrx29vRB3f1rS49V1TOTvHnKYMDh54tnf3F0BIDDxkquE/bD+9j3I4c4BwDAurLcmrALk/xgktOrauk9H49PcuvUwQAA5tlya8LeluRjSTYm+eUl+z+d5D1ThgIAmHfLrQn7SJKPJPnW1YsDALA+HHBNWFU9tKquqarPVNXtVXVnVX1qNcIBAMyrlSzM/40kFyb52yTHJnlakkunDAUAMO9WUsLS3TuSbOjuO7v7ZUnOnTYWAMB8W25h/h6fq6qjk1xXVVuzuFh/ReUNAIB9W0mZelKSDUkuTvLZJKck+d4pQwEAzLsDngmbfUsyST6f5PnTxgEAWB+Wu1jre7OPG3fv0d0PnCQRACu2ZcuWLCws5MQTT8zWrVtHxwEOwnJnwh67aikAuEcWFhaya9eu0TGAe+BAF2tNklTVVyb5ltnmX3f3zVMHAwCYZwdcE1ZV35/kl5K8KUkleVFVPae7r5w4GwDA3E67r+QSFc9L8i17zn5V1aYk/y+JEgYATG5ep91XUsKO2Gv68RNxnTBgnXrzwx8xOsLdfP7IDUlVPr9z55rK9oi3vHl0BFjzVlLC/qSqrk5y+Wz7B5JcNV0kAID5t5LrhD2nqh6X5GGzXZd19+umjQUAMN9WsjD/2Ule1d2vXYU8AADrwkqmI49P8qdVdWuSVyV5TXd/fNpYAKzECd13ewQOHyuZjnx+kudX1QOzuB7szVW1s7sfNXk6AJb1xDvvGh0BuIcO5luONydZyOK3I79imjgAAOvDAUtYVf3nqnpTkj9Lcv8kT3ffSACAL89K1oSdkuQnu/u6qcMAAKwXK1kT9jOrEQQAYD1x5XsAgAGUMACAAZQwAIABlDAAgAGUMACAAVZyiQoAYGbLli1ZWFjIiSeemK1bt46Ow2FMCQOAg7CwsJBdu3aNjsEcMB0JADCAEgYAMIASBgAwgBIGADCAhfkAwN38tyc+fnSEu7n15k8uPi58bE1le97vX/ll/f6kJayqzk3ya0k2JHlJd/+P/Yz73iRXJvmW7t4+ZSYADi+/8VOvHx3hbm675bP/9LiWsl38y98zOgIHabLpyKrakOTSJOclOTPJhVV15j7GHZ/kmUneMVUWAIC1Zso1YWcl2dHdN3b37UmuSHLBPsb9fJJfTPKFCbMAAKwpU5awk5LctGR752zfP6mqhyQ5pbv/z3IvVFUXVdX2qtq+e/fuQ58UAGCVDft2ZFUdkeR/JvmpA43t7su6e3N3b960adP04QAAJjZlCduV5JQl2yfP9u1xfJJvSPKmqvpwkocm2VZVmyfMBACwJkxZwq5JckZVnV5VRyd5QpJtew529ye7e2N3n9bdpyV5e5LzfTsSAFgPJith3X1HkouTXJ3khiSv7u7rq+oFVXX+VO8LAHA4mPQ6Yd19VZKr9tp3yX7GnjNlFgA4FI47+j53e4R7yhXzAeAgnP21jxsdgTnh3pEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAA7hYKwCwph2z4Yi7Pc4LJQwAWNMefP/jR0eYxHxVSgCAw4QSBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMMCkJayqzq2qD1bVjqp67j6OP7uq3l9V76mqP6uqr5kyDwDAWjFZCauqDUkuTXJekjOTXFhVZ+417F1JNnf3A5NcmWTrVHkAANaSKc+EnZVkR3ff2N23J7kiyQVLB3T3n3f352abb09y8oR5AADWjClL2ElJblqyvXO2b3+emuQNE+YBAFgzjhwdIEmq6olJNid5xH6OX5TkoiQ59dRTVzEZAMA0pjwTtivJKUu2T57tu5uqelSS5yU5v7v/cV8v1N2Xdffm7t68adOmScICAKymKUvYNUnOqKrTq+roJE9Ism3pgKp6cJL/lcUCdvOEWQAA1pTJSlh335Hk4iRXJ7khyau7+/qqekFVnT8b9ktJ/kWS11TVdVW1bT8vBwAwVyZdE9bdVyW5aq99lyx5/qgp3x8AYK1yxXwAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwAIABJi1hVXVuVX2wqnZU1XP3cfxeVfWq2fF3VNVpU+YBAFgrJithVbUhyaVJzktyZpILq+rMvYY9Nck/dPe/TvIrSX5xqjwAAGvJlGfCzkqyo7tv7O7bk1yR5IK9xlyQ5BWz51cmeWRV1YSZAADWhClL2ElJblqyvXO2b59juvuOJJ9Mcv8JMwEArAnV3dO8cNXjk5zb3U+bbT8pyb/r7ouXjHnfbMzO2fbfzcbcstdrXZTkotnmA5J8cJLQ09uY5JYDjuJQ8pmvPp/56vOZrz6f+eo7XD/zr+nuTfs6cOSEb7orySlLtk+e7dvXmJ1VdWSS+yb5xN4v1N2XJblsopyrpqq2d/fm0TnWE5/56vOZrz6f+erzma++efzMp5yOvCbJGVV1elUdneQJSbbtNWZbkh+ePX98kjf2VKfmAADWkMnOhHX3HVV1cZKrk2xI8tLuvr6qXpBke3dvS/I7SX6vqnYkuTWLRQ0AYO5NOR2Z7r4qyVV77btkyfMvJPm+KTOsMYf9lOphyGe++nzmq89nvvp85qtv7j7zyRbmAwCwf25bBAAwgBI2sao6pqr+uqreXVXXV9XzR2daL6pqQ1W9q6r+eHSW9aCqPlxV762q66pq++g860FVnVBVV1bVB6rqhqr61tGZ5llVPWD27/een09V1U+OzjXvqupZs/9/vq+qLq+qY0ZnOlRMR05sdgeA47r7M1V1VJK/TPLM7n774Ghzr6qenWRzkvt092NH55l3VfXhJJv3vs4f06mqVyT5i+5+yexb6Pfu7ttG51oPZrfm25XFa1t+ZHSeeVVVJ2Xx/5tndvfnq+rVSa7q7pePTXZoOBM2sV70mdnmUbMfzXdiVXVyku9O8pLRWWAKVXXfJA/P4rfM0923K2Cr6pFJ/k4BWxVHJjl2dj3Reyf5+8F5DhklbBXMpsWuS3Jzkv/b3e8YnWkd+NUkW5LcNTrIOtJJ/rSqrp3d5YJpnZ5kd5KXzabdX1JVx40OtY48Icnlo0PMu+7eleSFST6a5GNJPtndfzo21aGjhK2C7r6zux+UxbsGnFVV3zA60zyrqscmubm7rx2dZZ15WHc/JMl5SZ5RVQ8fHWjOHZnkIUl+s7sfnOSzSZ47NtL6MJv6PT/Ja0ZnmXdVdb8kF2Txj46vTnJcVT1xbKpDRwlbRbOpgj9Pcu7oLHPu7CTnz9YoXZHkO6rq98dGmn+zv1jT3TcneV2Ss8Ymmns7k+xccmb9yiyWMqZ3XpJ3dvfHRwdZBx6V5EPdvbu7v5jktUm+bXCmQ0YJm1hVbaqqE2bPj03y6CQfGJtqvnX3z3T3yd19WhanDN7Y3XPzl9NaVFXHVdXxe54n+c4k7xubar5190KSm6rqAbNdj0zy/oGR1pMLYypytXw0yUOr6t6zL7o9MskNgzMdMpNeMZ8kyVclecXsmzRHJHl1d7tkAvPmK5O8bvG/kTkyyR9095+MjbQu/HiSV86mx25M8pTBeebe7I+MRyf50dFZ1oPufkdVXZnknUnuSPKuzNGV812iAgBgANORAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQBLVNVpVfW+2fPNVfXrs+fnVNXcXCQSGM91wgD2o7u3J9k+2zwnyWeSvG1YIGCuOBMGzI2qel5V/U1V/WVVXV5VP11Vb6qqzbPjG2e3s9pzxusvquqds58vOcs1O/v1x1V1WpIfS/Ksqrquqr69qj5UVUfNxt1n6TbASjgTBsyFqvrmLN6m6kFZ/G/bO5MsdxP3m5M8uru/UFVnZPE2NJv3NbC7P1xVv5XkM939wtn7vSnJdyf5w9n7vnZ2bzuAFXEmDJgX357kdd39ue7+VJJtBxh/VJLfrqr3JnlNkjMP8v1ekn++TdBTkrzsIH8fWOecCQPm3R355z84j1my/1lJPp7km2bHv3AwL9rdb51NaZ6TZEN3u2E5cFCcCQPmxVuS/IeqOraqjk/yPbP9H07yzbPnj18y/r5JPtbddyV5UpINB3j9Tyc5fq99v5vkD+IsGHAPKGHAXOjudyZ5VZJ3J3lDkmtmh16Y5D9V1buSbFzyKy9O8sNV9e4kX5/kswd4i9cn+Y97FubP9r0yyf2yuJ4M4KBUd4/OAHDIVdXPZclC+one4/FJLujuJ031HsD8siYM4B6oqhclOS/JY0ZnAQ5PzoQBAAxgTRgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAA/x/8T9XXMdGANwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "tags": [], "needs_background": "light" } } ] }, { "cell_type": "markdown", "metadata": { "id": "1W_oRCVczIgJ" }, "source": [ "## 3.2. Zbiór Test (bash)" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 419 }, "id": "LJzygNqKzOWY", "outputId": "d4f8dd3b-793c-4e02-a6ea-fbdb8fbf7a19" }, "source": [ "wine_test_bash" ], "execution_count": 14, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
07.10.600.012.30.07924.037.00.995143.400.6110.96
17.80.610.291.60.1149.029.00.997403.261.569.15
27.10.630.062.00.0838.029.00.998553.670.739.65
39.10.300.412.00.06810.024.00.995233.270.8511.77
49.00.460.312.80.09319.098.00.998153.320.639.56
.......................................
2617.20.600.042.50.07618.088.00.997453.530.559.55
2628.40.670.192.20.09311.075.00.997363.200.599.24
2638.80.610.194.00.09430.069.00.997873.220.5010.06
2649.60.680.242.20.0875.028.00.998803.140.6010.25
26510.50.430.353.30.09224.070.00.997983.210.6910.56
\n", "

266 rows × 12 columns

\n", "
" ], "text/plain": [ " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n", "0 7.1 0.60 0.01 ... 0.61 10.9 6\n", "1 7.8 0.61 0.29 ... 1.56 9.1 5\n", "2 7.1 0.63 0.06 ... 0.73 9.6 5\n", "3 9.1 0.30 0.41 ... 0.85 11.7 7\n", "4 9.0 0.46 0.31 ... 0.63 9.5 6\n", ".. ... ... ... ... ... ... ...\n", "261 7.2 0.60 0.04 ... 0.55 9.5 5\n", "262 8.4 0.67 0.19 ... 0.59 9.2 4\n", "263 8.8 0.61 0.19 ... 0.50 10.0 6\n", "264 9.6 0.68 0.24 ... 0.60 10.2 5\n", "265 10.5 0.43 0.35 ... 0.69 10.5 6\n", "\n", "[266 rows x 12 columns]" ] }, "metadata": { "tags": [] }, "execution_count": 14 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "1IAtBylEzS8w", "outputId": "1f047c20-f723-490d-ada3-474f5d14db3a" }, "source": [ "wine_test_bash[\"quality\"].value_counts()" ], "execution_count": 15, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "6 109\n", "5 108\n", "7 37\n", "4 8\n", "8 2\n", "3 2\n", "Name: quality, dtype: int64" ] }, "metadata": { "tags": [] }, "execution_count": 15 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 297 }, "id": "V-9cwcrczS-3", "outputId": "a8a26e7f-a2c4-4a44-c91a-6ce57be85386" }, "source": [ "wine_test_bash.describe(include='all')" ], "execution_count": 16, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
count266.000000266.000000266.000000266.000000266.000000266.000000266.000000266.000000266.000000266.000000266.000000266.000000
mean8.2458650.5294550.2662032.3733080.08682315.84022647.4473680.9964993.3131950.67624110.5699255.665414
std1.5261750.1815830.1919681.0053450.04615910.16309634.6103790.0017720.1588710.1877861.1497280.808497
min4.6000000.1800000.0000001.2000000.0390001.0000007.0000000.9908402.8800000.3900009.0000003.000000
25%7.2000000.3925000.1000001.9000000.0680007.00000022.2500000.9953183.2000000.5600009.5000005.000000
50%8.0000000.5200000.2600002.1000000.07800014.00000040.0000000.9965203.3100000.64000010.2500006.000000
75%9.1000000.6300000.4000002.5000000.09200021.00000062.7500000.9976003.4000000.75000011.4000006.000000
max13.3000001.3300000.7400008.8000000.46700051.000000289.0000001.0026003.9000001.98000014.0000008.000000
\n", "
" ], "text/plain": [ " fixed acidity volatile acidity ... alcohol quality\n", "count 266.000000 266.000000 ... 266.000000 266.000000\n", "mean 8.245865 0.529455 ... 10.569925 5.665414\n", "std 1.526175 0.181583 ... 1.149728 0.808497\n", "min 4.600000 0.180000 ... 9.000000 3.000000\n", "25% 7.200000 0.392500 ... 9.500000 5.000000\n", "50% 8.000000 0.520000 ... 10.250000 6.000000\n", "75% 9.100000 0.630000 ... 11.400000 6.000000\n", "max 13.300000 1.330000 ... 14.000000 8.000000\n", "\n", "[8 rows x 12 columns]" ] }, "metadata": { "tags": [] }, "execution_count": 16 } ] }, { "cell_type": "markdown", "metadata": { "id": "wzaUXARnu824" }, "source": [ "Testowy Wykres (quality, volatile acidity)" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 405 }, "id": "3GksWzExaHV7", "outputId": "21b77c09-445c-4e06-fcea-6f26d3717870" }, "source": [ "fig = plt.figure(figsize = (10,6))\n", "sns.barplot(x = 'quality', y = 'volatile acidity', data = wine_test_bash)" ], "execution_count": 17, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": { "tags": [] }, "execution_count": 17 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAFzCAYAAAB2A95GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAY1ElEQVR4nO3dfZBlZ10n8O8vM8RADC+a6GgSTNaNuFERcIxoFCgRTRCTXQRlXEApNboSRVCnsNhCwd2tcoDVVaNulgXxBSJmQQc3EFcRUJSYCYSXENExEDIjbSa8vxqS/PaPvqOdyUx3zzCnn+7bn09V173nnKfP/eZWKvn2c96quwMAwNo6YXQAAIDNSAkDABhACQMAGEAJAwAYQAkDABhACQMAGGDr6ABH69RTT+2zzjprdAwAgBVdd911t3X3aYfbtuFK2FlnnZU9e/aMjgEAsKKquvlI2xyOBAAYQAkDABhACQMAGGCyElZVL6mqW6vqXUfYXlX1K1W1t6reUVUPmyoLAMB6M+VM2G8luWCZ7RcmOWf2c0mS35gwCwDAujJZCevuNyX50DJDLk7y273oLUnuX1VfMlUeAID1ZOQ5YacnuWXJ8r7ZOgCAubchTsyvqkuqak9V7Tlw4MDoOAAAn7ORJWx/kjOXLJ8xW3cP3X15d2/v7u2nnXbYm84CAGwoI0vY7iRPnV0l+fAkH+3uDwzMAwCwZiZ7bFFVvSLJo5KcWlX7kvxcknslSXf/ZpKrkjw2yd4kn0rytKmyAACsN5OVsO7escL2TvL0qT4fAGA923AP8N6odu7cmYWFhWzbti27du0aHQcAGEwJWyMLCwvZv/+w1x0AAJvQhrhFBQDAvFHCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABtg6OgBMZefOnVlYWMi2bduya9eu0XEA4G6UMObWwsJC9u/fPzoGAByWw5EAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAA0xawqrqgqp6T1XtrapnH2b7A6vqz6vqbVX1jqp67JR5AADWi8lKWFVtSXJZkguTnJtkR1Wde8iw/5zkld390CRPSvLrU+UBAFhPppwJOy/J3u6+qbtvT3JFkosPGdNJ7jt7f78k/zhhHgCAdWPKEnZ6kluWLO+brVvq55M8uar2JbkqyY8fbkdVdUlV7amqPQcOHJgiKwDAmhp9Yv6OJL/V3WckeWyS36mqe2Tq7su7e3t3bz/ttNPWPCQAwPE2ZQnbn+TMJctnzNYt9YNJXpkk3f3XSU5KcuqEmQAA1oUpS9i1Sc6pqrOr6sQsnni/+5Ax70/y6CSpqn+XxRLmeCMAMPcmK2HdfUeSS5NcneTGLF4FeUNVPb+qLpoN+6kkP1xVb0/yiiQ/0N09VSYAgPVi65Q77+6rsnjC/dJ1z13y/t1Jzp8yAwDAejT6xHwAgE1JCQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABhACQMAGEAJAwAYYOvoAMyH9z//a0ZHuIc7PvQFSbbmjg/dvK7yPfC57xwdAYB1wEwYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAc3mfsK/7md8eHeEeTrnt49mS5P23fXxd5bvuBU8dHQEANiUzYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAA2wdHQCYHzt37szCwkK2bduWXbt2jY4DsK6tOBNWVddV1dOr6gFrEQjYuBYWFrJ///4sLCyMjgKw7q3mcOT3JvnSJNdW1RVV9R1VVRPnAgCYayuWsO7e293PSfIVSV6e5CVJbq6q51XVF0wdEABgHq3qxPyqenCSFyV5QZL/k+SJST6W5PXTRQMAmF+rOicsyS8luTbJg7v7J7r7mu5+UZKbVvjdC6rqPVW1t6qefYQx31NV766qG6rq5cfyDwEAsNGs5urIJ3b33cpWVZ3d3e/t7scf6ZeqakuSy5I8Jsm+LJ5Ttru7371kzDlJfjbJ+d394ar6omP6pwAA2GBWczjyylWuO9R5SfZ2903dfXuSK5JcfMiYH05yWXd/OEm6+9ZV7BcAYMM74kxYVX1lkq9Kcr+qWjrjdd8kJ61i36cnuWXJ8r4k33DImK+Yfdabk2xJ8vPd/bpV7BsAYENb7nDkg5I8Lsn9k3zXkvUfz+IM1vH6/HOSPCrJGUneVFVf090fWTqoqi5JckmSPPCBDzxOHw0AMM4RS1h3/1GSP6qqb+zuvz6Gfe9PcuaS5TNm65bal+Sa7v5skvdW1d9lsZRde0iWy5NcniTbt2/vY8gCALCuLHc4cmd370ryfVW149Dt3f0TK+z72iTnVNXZWSxfT0ryfYeM+cMkO5K8tKpOzeLhyWWvuAQAmAfLHY68cfa651h23N13VNWlSa7O4vleL+nuG6rq+Un2dPfu2bZvr6p3J7kzyc909weP5fNgszn/V88fHeEeTvzIiTkhJ+SWj9yyrvK9+cffPDoCwD0sdzjyNbPXlx3rzrv7qiRXHbLuuUved5JnzX4AADaN5Q5HvibJEc+/6u6LJkkEALAJLHc48oWz18cn2Zbkd2fLO5L805ShAADm3XKHI9+YJFX1ou7evmTTa6rqmM4TAwBg0WoeW3RyVf2bg48uml3tePK0seBzd+pJdyW5Y/YKwEa1c+fOLCwsZNu2bdm1a9foOMfNakrYM5O8oapuSlJJvizJj0yaCo6Dn37wR1YeBMC6t7CwkP37D73V6Ma3Ygnr7tfNHrT9lbNVf9vd/zxtLACA+bbc1ZHf2t2vP+S5kUny5VWV7n7VxNkAAObWcjNhj0zy+tz9uZEHdRIlDADgGC13deTPzV6ftnZxAAA2hxNWGlBV/62q7r9k+QFV9V+mjQVsRH2fzl0n35W+zxHv8wzAzIolLMmF3f0vl5l194eTPHa6SMBG9dnzP5vbH3N7Pnv+Z0dHAVj3VlPCtlTV5x1cqKp7J/m8ZcYDALCC1dwn7PeS/FlVvXS2/LQkx/xQbwAAVnefsF+sqnckefRs1S9099XTxgIAmG+rmQlLd782yWsnzgLAUZrXx7nAZrCaqyMfXlXXVtUnqur2qrqzqj62FuEAWN7Bx7ksLCyMjgIcpdWcmP9rSXYk+fsk907yQ0kumzIUAMC8W00JS3fvTbKlu+/s7pcmuWDaWAAA820154R9qqpOTHJ9Ve1K8oGssrwBAHB4qylTT5mNuzTJJ5OcmeS7pwwFADDvVnOLiptnbz+T5HnTxgEA2BwcVgQAGEAJAwAYYNUlrKruM2UQAIDNZMVzwqrqm5K8OMnnJ3lgVX1tkh/p7h+bOhzAevLGRzxydIR7+PTWLUlVPr1v37rK98g3vXF0BFj3VjMT9ktJviPJB5Oku9+e5BFThgIAmHervVnrLYesunOCLAAAm8ZqbtZ6y+yQZFfVvZI8I8mN08YCAJhvq5kJ+9EkT09yepL9SR4yWwYA4Bit5mattyX5j2uQBQBg0zhiCauqX03SR9re3T8xSSIAgE1guZmwPWuWAgBgkzliCevul61lEACAzWS5w5G/3N0/WVWvyWEOS3b3RZMmAwCYY8sdjvyd2esL1yIIADDef33yE0ZHuIcP3frRxdeFD6yrfM/53Ss/p99f7nDkdbO3D+nu/7F0W1U9I4lnUgAMdv/uu70CG8dq7hP2/YdZ9wPHOQcAx+DJd96VS++4M0++867RUYCjtNw5YTuSfF+Ss6tq95JNpyT50NTBAADm2XLnhP1Vkg8kOTXJi5as/3iSd0wZCgBg3i13TtjNSW5O8o1rFwcAYHNY8Zywqnp4VV1bVZ+oqtur6s6q+thahAMAmFerOTH/15LsSPL3Se6d5IeSXDZlKACAebeaEpbu3ptkS3ff2d0vTXLBtLEAAObbcifmH/SpqjoxyfVVtSuLJ+uvqrwBAHB4qylTT0myJcmlST6Z5Mwk3z1lKACAebfiTNjsKskk+XSS500bBwBgc1juZq3vzGEe3H1Qdz94kkRz6q4TT77bKwCwuS03E/a4NUuxCXzynG8fHQEAWEdWullrkqSqvjjJ188W/6a7b506GADAPFvNzVq/J8nfJHliku9Jck1VPWHqYAAA82w1t6h4TpKvPzj7VVWnJfnTJFdOGQwAYJ6t5hYVJxxy+PGDq/w9AACOYDUzYa+rqquTvGK2/L1JrpouEgDA/FvNfcJ+pqoen+SbZ6su7+5XTxsLAGC+rVjCqupZSX6/u1+1BnkAADaF1ZzbdUqSP6mqv6iqS2e3q1iVqrqgqt5TVXur6tnLjPvuquqq2r7afQMAbGQrlrDufl53f1WSpyf5kiRvrKo/Xen3qmpLksuSXJjk3CQ7qurcw4w7JckzklxzlNkBADaso7nK8dYkC1m8OvKLVjH+vCR7u/um7r49yRVJLj7MuF9I8otJPnMUWQBgiJ07d+apT31qdu7cOToKG9xqbtb6Y1X1hiR/luQLk/zwKp8beXqSW5Ys75utW7rvhyU5s7v/7woZLqmqPVW158CBA6v4aACYxsLCQvbv35+FhYXRUdjgVnOLijOT/GR3X388P7iqTkjy35P8wEpju/vyJJcnyfbt24/4UHEAgI1iNbeo+Nlj3Pf+LBa4g86YrTvolCRfneQNVZUk25LsrqqLunvPMX4mAMCGMOWd769Nck5VnV1VJyZ5UpLdBzd290e7+9TuPqu7z0ryliQKGACwKUxWwrr7jiSXJrk6yY1JXtndN1TV86vqoqk+FwBgI1jNOWHHrLuvyiGPOOru5x5h7KOmzAIAsJ54EDcAwACTzoQBAHyuTtpywt1e54USBgCsaw/9wlNGR5iEEgbAuvVrP/Wa0RHu4SO3ffJfXtdTvktf9F2jI3CU5mteDwBgg1DCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAZwx3wAOAonn3jfu73CsVLCAOAonP/ljx8dgTnhcCQAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAk5awqrqgqt5TVXur6tmH2f6sqnp3Vb2jqv6sqr5syjwAAOvFZCWsqrYkuSzJhUnOTbKjqs49ZNjbkmzv7gcnuTLJrqnyAACsJ1POhJ2XZG9339Tdtye5IsnFSwd0959396dmi29JcsaEeQAA1o0pS9jpSW5Zsrxvtu5IfjDJaw+3oaouqao9VbXnwIEDxzEiAMAY6+LE/Kp6cpLtSV5wuO3dfXl3b+/u7aeddtrahgMAmMDWCfe9P8mZS5bPmK27m6r6tiTPSfLI7v7nCfMAAKwbU86EXZvknKo6u6pOTPKkJLuXDqiqhyb5n0ku6u5bJ8wCALCuTFbCuvuOJJcmuTrJjUle2d03VNXzq+qi2bAXJPn8JH9QVddX1e4j7A4AYK5MeTgy3X1VkqsOWffcJe+/bcrPBwBYr9bFifkAAJuNEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwwKQlrKouqKr3VNXeqnr2YbZ/XlX9/mz7NVV11pR5AADWi8lKWFVtSXJZkguTnJtkR1Wde8iwH0zy4e7+t0l+KckvTpUHAGA9mXIm7Lwke7v7pu6+PckVSS4+ZMzFSV42e39lkkdXVU2YCQBgXZiyhJ2e5JYly/tm6w47prvvSPLRJF84YSYAgHWhunuaHVc9IckF3f1Ds+WnJPmG7r50yZh3zcbsmy3/w2zMbYfs65Ikl8wWH5TkPZOEnt6pSW5bcRTHk+987fnO157vfO35ztfeRv3Ov6y7Tzvchq0Tfuj+JGcuWT5jtu5wY/ZV1dYk90vywUN31N2XJ7l8opxrpqr2dPf20Tk2E9/52vOdrz3f+drzna+9efzOpzwceW2Sc6rq7Ko6McmTkuw+ZMzuJN8/e/+EJK/vqabmAADWkclmwrr7jqq6NMnVSbYkeUl331BVz0+yp7t3J/nfSX6nqvYm+VAWixoAwNyb8nBkuvuqJFcdsu65S95/JskTp8ywzmz4Q6obkO987fnO157vfO35ztfe3H3nk52YDwDAkXlsEQDAAErYxKrqpKr6m6p6e1XdUFXPG51ps6iqLVX1tqr649FZNoOqel9VvbOqrq+qPaPzbAZVdf+qurKq/raqbqyqbxydaZ5V1YNm/34f/PlYVf3k6FzzrqqeOfv/57uq6hVVddLoTMeLw5ETmz0B4OTu/kRV3SvJXyZ5Rne/ZXC0uVdVz0qyPcl9u/txo/PMu6p6X5Lth97nj+lU1cuS/EV3v3h2Ffp9uvsjo3NtBrNH8+3P4r0tbx6dZ15V1elZ/P/mud396ap6ZZKruvu3xiY7PsyETawXfWK2eK/Zj+Y7sao6I8l3Jnnx6Cwwhaq6X5JHZPEq83T37QrYmnp0kn9QwNbE1iT3nt1P9D5J/nFwnuNGCVsDs8Ni1ye5Ncn/6+5rRmfaBH45yc4kd40Osol0kj+pqutmT7lgWmcnOZDkpbPD7i+uqpNHh9pEnpTkFaNDzLvu3p/khUnen+QDST7a3X8yNtXxo4Stge6+s7sfksWnBpxXVV89OtM8q6rHJbm1u68bnWWT+ebufliSC5M8vaoeMTrQnNua5GFJfqO7H5rkk0mePTbS5jA79HtRkj8YnWXeVdUDklycxT86vjTJyVX15LGpjh8lbA3NDhX8eZILRmeZc+cnuWh2jtIVSb61qn53bKT5N/uLNd19a5JXJzlvbKK5ty/JviUz61dmsZQxvQuTvLW7/2l0kE3g25K8t7sPdPdnk7wqyTcNznTcKGETq6rTqur+s/f3TvKYJH87NtV86+6f7e4zuvusLB4yeH13z81fTutRVZ1cVaccfJ/k25O8a2yq+dbdC0luqaoHzVY9Osm7B0baTHbEoci18v4kD6+q+8wudHt0khsHZzpuJr1jPkmSL0nystmVNCckeWV3u2UC8+aLk7x68b+R2Zrk5d39urGRNoUfT/J7s8NjNyV52uA8c2/2R8ZjkvzI6CybQXdfU1VXJnlrkjuSvC1zdOd8t6gAABjA4UgAgAGUMACAAZQwAIABlDAAgAGUMACAAZQwgJmqOquq3jV7v72qfmX2/lFVNTc3iATWB/cJAziM7t6TZM9s8VFJPpHkr4YFAuaOmTBgLlTVc6rq76rqL6vqFVX101X1hqraPtt+6uxRVgdnvP6iqt46+7nHLNds9uuPq+qsJD+a5JlVdX1VfUtVvbeq7jUbd9+lywCrZSYM2PCq6uuy+Iiqh2Txv2tvTbLcA9xvTfKY7v5MVZ2TxUfQbD/cwO5+X1X9ZpJPdPcLZ5/3hiTfmeQPZ5/7qtlz7QBWzUwYMA++Jcmru/tT3f2xJLtXGH+vJP+rqt6Z5A+SnHuUn/fi/Osjgp6W5KVH+fsAZsKAuXZH/vWPzZOWrH9mkn9K8rWz7Z85mp1295tnhzQflWRLd3tYOXDUzIQB8+BNSf59Vd27qk5J8l2z9e9L8nWz909YMv5+ST7Q3XcleUqSLSvs/+NJTjlk3W8neXnMggHHSAkDNrzufmuS30/y9iSvTXLtbNMLk/ynqnpbklOX/MqvJ/n+qnp7kq9M8skVPuI1Sf7DwRPzZ+t+L8kDsng+GcBRq+4enQHguKqqn8+SE+kn+ownJLm4u58y1WcA8805YQBHqap+NcmFSR47OguwcZkJAwAYwDlhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAA/x/Xryk3NKoxl4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "tags": [], "needs_background": "light" } } ] }, { "cell_type": "markdown", "metadata": { "id": "w5xmkUgGzdxs" }, "source": [ "## 3.3. Cały zbiór" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 419 }, "id": "thGHHVJXzeGe", "outputId": "a1bbe5c6-3aef-4a70-82ec-adc2b9d6daf5" }, "source": [ "wine" ], "execution_count": 18, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
07.40.7000.001.90.07611.034.00.997803.510.569.45
17.80.8800.002.60.09825.067.00.996803.200.689.85
27.80.7600.042.30.09215.054.00.997003.260.659.85
311.20.2800.561.90.07517.060.00.998003.160.589.86
47.40.7000.001.90.07611.034.00.997803.510.569.45
.......................................
15946.20.6000.082.00.09032.044.00.994903.450.5810.55
15955.90.5500.102.20.06239.051.00.995123.520.7611.26
15966.30.5100.132.30.07629.040.00.995743.420.7511.06
15975.90.6450.122.00.07532.044.00.995473.570.7110.25
15986.00.3100.473.60.06718.042.00.995493.390.6611.06
\n", "

1599 rows × 12 columns

\n", "
" ], "text/plain": [ " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n", "0 7.4 0.700 0.00 ... 0.56 9.4 5\n", "1 7.8 0.880 0.00 ... 0.68 9.8 5\n", "2 7.8 0.760 0.04 ... 0.65 9.8 5\n", "3 11.2 0.280 0.56 ... 0.58 9.8 6\n", "4 7.4 0.700 0.00 ... 0.56 9.4 5\n", "... ... ... ... ... ... ... ...\n", "1594 6.2 0.600 0.08 ... 0.58 10.5 5\n", "1595 5.9 0.550 0.10 ... 0.76 11.2 6\n", "1596 6.3 0.510 0.13 ... 0.75 11.0 6\n", "1597 5.9 0.645 0.12 ... 0.71 10.2 5\n", "1598 6.0 0.310 0.47 ... 0.66 11.0 6\n", "\n", "[1599 rows x 12 columns]" ] }, "metadata": { "tags": [] }, "execution_count": 18 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Ua_ctPpVzeKJ", "outputId": "da95e47b-9e44-42e0-efc0-66631dba99f1" }, "source": [ "wine[\"quality\"].value_counts()" ], "execution_count": 19, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "5 681\n", "6 638\n", "7 199\n", "4 53\n", "8 18\n", "3 10\n", "Name: quality, dtype: int64" ] }, "metadata": { "tags": [] }, "execution_count": 19 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 297 }, "id": "-06v1i7XzeOz", "outputId": "b0da7e9b-98aa-4af6-8131-359a54c2ac69" }, "source": [ "wine.describe(include='all')" ], "execution_count": 20, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
count1599.0000001599.0000001599.0000001599.0000001599.0000001599.0000001599.0000001599.0000001599.0000001599.0000001599.0000001599.000000
mean8.3196370.5278210.2709762.5388060.08746715.87492246.4677920.9967473.3111130.65814910.4229835.636023
std1.7410960.1790600.1948011.4099280.04706510.46015732.8953240.0018870.1543860.1695071.0656680.807569
min4.6000000.1200000.0000000.9000000.0120001.0000006.0000000.9900702.7400000.3300008.4000003.000000
25%7.1000000.3900000.0900001.9000000.0700007.00000022.0000000.9956003.2100000.5500009.5000005.000000
50%7.9000000.5200000.2600002.2000000.07900014.00000038.0000000.9967503.3100000.62000010.2000006.000000
75%9.2000000.6400000.4200002.6000000.09000021.00000062.0000000.9978353.4000000.73000011.1000006.000000
max15.9000001.5800001.00000015.5000000.61100072.000000289.0000001.0036904.0100002.00000014.9000008.000000
\n", "
" ], "text/plain": [ " fixed acidity volatile acidity ... alcohol quality\n", "count 1599.000000 1599.000000 ... 1599.000000 1599.000000\n", "mean 8.319637 0.527821 ... 10.422983 5.636023\n", "std 1.741096 0.179060 ... 1.065668 0.807569\n", "min 4.600000 0.120000 ... 8.400000 3.000000\n", "25% 7.100000 0.390000 ... 9.500000 5.000000\n", "50% 7.900000 0.520000 ... 10.200000 6.000000\n", "75% 9.200000 0.640000 ... 11.100000 6.000000\n", "max 15.900000 1.580000 ... 14.900000 8.000000\n", "\n", "[8 rows x 12 columns]" ] }, "metadata": { "tags": [] }, "execution_count": 20 } ] }, { "cell_type": "markdown", "metadata": { "id": "t8Y53QPyu_fO" }, "source": [ "Testowy Wykres (quality, volatile acidity)" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 405 }, "id": "hEe3BYcJaKnF", "outputId": "cd03275d-d09e-4517-ef76-22b40d9ffa9e" }, "source": [ "fig = plt.figure(figsize = (10,6))\n", "sns.barplot(x = 'quality', y = 'volatile acidity', data = wine)" ], "execution_count": 21, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": { "tags": [] }, "execution_count": 21 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAFzCAYAAAB2A95GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAYzUlEQVR4nO3de/TndV0n8OeLQQJZvNTMNgUUbEu2VKY2sRalnswCM9g1LWm18pjUrpSXcg4e91ja7p7jqFtbYi1rmV2UiNXCdowu3sqSGAQviNaEIjP5i0HzriHw2j9+36kfw1y+g/P5vX/z/T0e5/zO9/u5/L7fJ5/Dgefv/f5cqrsDAMDqOmZ0AACA9UgJAwAYQAkDABhACQMAGEAJAwAYQAkDABjg2NEBDtfGjRv7tNNOGx0DAOCQrr322tu6e9P+th11Jey0007Ljh07RscAADikqrr5QNtMRwIADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAxw1D3A+2i1devWLC0tZfPmzdm2bdvoOADAYErYKllaWsru3btHxwAA1gjTkQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAANMVsKq6ter6taqeu8BtldV/VJV7ayqd1fVw6bKAgCw1kw5EvYbSc45yPZzk5wx+7kwya9MmAUAYE2ZrIR199uSfOwgu5yf5Dd72TuSPKCqvmKqPAAAa8nIc8JOTnLLiuVds3UAAAvvqDgxv6ourKodVbVjz549o+MAAHzRRpaw3UlOXbF8ymzdPXT3pd29pbu3bNq0aVXCAQBMaWQJuzLJD8+uknx4kk9090cG5gEAWDXHTvXBVfXaJI9KsrGqdiX52ST3SZLu/tUk25M8NsnOJJ9N8tSpsgAArDWTlbDuvuAQ2zvJM6b6fgCAteyoODEfAGDRKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADKGEAAAMoYQAAAyhhAAADHDs6wBS++bm/OTrCPZx026eyIcmHb/vUmsp37Ut+eHQEAFiXjIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADKCEAQAMoIQBAAyghAEADDBpCauqc6rqA1W1s6ou3s/2r6qqN1fVdVX17qp67JR5AADWislKWFVtSHJJknOTnJnkgqo6c5/d/muSy7v7oUmelOQVU+UBAFhLphwJOyvJzu6+qbtvT3JZkvP32aeT3G/2/v5J/n7CPAAAa8aUJezkJLesWN41W7fSzyV5clXtSrI9yU/u74Oq6sKq2lFVO/bs2TNFVgCAVTX6xPwLkvxGd5+S5LFJfquq7pGpuy/t7i3dvWXTpk2rHhIA4EibsoTtTnLqiuVTZutWelqSy5Oku/8qyfFJNk6YCQBgTZiyhF2T5IyqOr2qjsvyifdX7rPPh5M8Okmq6t9luYSZbwQAFt5kJay770hyUZKrktyY5asgb6iqF1XVebPdfjrJ06vqXUlem+RHu7unygQAsFYcO+WHd/f2LJ9wv3LdC1a8f1+Ss6fMAACwFo0+MR8AYF1SwgAABlDCAAAGUMIAAAZQwgAABlDCAAAGUMIAAAaY9D5hMNLWrVuztLSUzZs3Z9u2baPjAMDdKGEsrKWlpezeve/jSgFgbTAdCQAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwwLGjA6wXdx134t1eF82HX/SNoyPcwx0f+9Ikx+aOj928pvJ91QveMzoCAGuAErZKPnPGd4+OAACsIYecjqyqa6vqGVX1wNUIBACwHsxzTtgPJvnKJNdU1WVV9T1VVRPnAgBYaIcsYd29s7ufn+Rrk7wmya8nubmqXlhVXzp1QACARTTX1ZFV9eAkL0vykiT/N8kTk3wyyZumiwYAsLgOeWJ+VV2b5ONJfi3Jxd39T7NNV1fV2VOGAwBYVPNcHfnE7r5p5YqqOr27P9jdj58oFwDAQptnOvKKOdcBADCnA46EVdXXJfn6JPevqpUjXvdLcvzUwQAAFtnBpiMflORxSR6Q5PtWrP9UkqdPGQoAYNEdsIR19x8k+YOq+tbu/qtVzAQAsPAONh25tbu3Jfmhqrpg3+3d/VOTJgMAWGAHm468cfa6YzWCAACsJwebjnzD7PXVqxcHAGB9ONh05BuS9IG2d/d5kyQCAFgHDjYd+dLZ6+OTbE7y27PlC5L8w5ShAAAW3cGmI9+aJFX1su7esmLTG6rKeWIAAF+Eee6Yf2JV/Zu9C1V1epITp4sER8bG4+/Kl59wRzYef9foKABwD/M8O/LZSd5SVTclqSRfneTHJ00FR8DPPPjjoyMAwAEdsoR19x9V1RlJvm626v3d/U/TxgIAWGwHuzryO7v7Tfs8NzJJvqaq0t2vmzgbAMDCOthI2COTvCl3f27kXp1ECQMAuJcOdnXkz85en7p6cQAA1odDXh1ZVf+jqh6wYvmBVfXf5vnwqjqnqj5QVTur6uID7PMDVfW+qrqhql4zf3QAgKPXPLeoOLe7//kys+7+xySPPdQvVdWGJJckOTfJmUkuqKoz99nnjCTPS3J2d399kmcdRnYAgKPWPCVsQ1V9yd6FqjohyZccZP+9zkqys7tv6u7bk1yW5Px99nl6kktmxS7dfet8sQEAjm7zlLDfSfJnVfW0qnpakj9JMs9DvU9OcsuK5V2zdSt9bZKvraq3V9U7quqc/X1QVV1YVTuqaseePXvm+GoAgLVtnvuEvbiq3p3k0bNVP9/dVx3B7z8jyaOSnJLkbVX1jSunP2cZLk1yaZJs2bLlgA8VBwA4Wsxzx/x09xuTvPEwP3t3klNXLJ8yW7fSriRXd/cXknywqv4my6XsmsP8LmAN2Lp1a5aWlrJ58+Zs27ZtdByANW2eqyMfXlXXVNWnq+r2qrqzqj45x2dfk+SMqjq9qo5L8qQkV+6zz+9neRQsVbUxy9OTNx3WPwGwZiwtLWX37t1ZWloaHQVgzZvnnLCXJ7kgyd8mOSHJj2X5qseD6u47klyU5KokNya5vLtvqKoXVdV5s92uSvLRqnpfkjcneW53f/Tw/zEAAI4u805H7qyqDd19Z5JXVdV1Wb61xKF+b3uS7fuse8GK953kObMfAIB1Y54S9tnZdOL1VbUtyUcy3wgaAAAHME8Je0qWS9dFSZ6d5ZPtv3/KUMChnf3LZ4+OcA/Hffy4HJNjcsvHb1lT+d7+k28fHQHgHua5RcXNs7efT/LCaeMAAKwPphUBAAZQwgAABpi7hFXVfacMAhz9+r6du068K31fD7YAOJR5btb6bbP7eL1/tvxNVfWKyZMBR50vnP2F3P6Y2/OFs78wOgrAmjfPSNgvJPmeJB9Nku5+V5JHTBkKAGDRzTUd2d237LPqzgmyAACsG/PcJ+yWqvq2JF1V90nyzCw/hggAgHtpnpGwn0jyjCQnJ9md5CGzZQAA7qV5btZ6W5L/tApZAADWjQOWsKr65SQHvM68u39qkkQAAOvAwUbCdqxaCgCAdeaAJay7X72aQQAA1pODTUf+Ync/q6rekP1MS3b3eZMmAwBYYAebjvyt2etLVyMIAMB6crDpyGtnbx/S3f9r5baqemaSt04ZDABgkc1zn7Af2c+6Hz3COQAA1pWDnRN2QZIfSnJ6VV25YtNJST42dTAADm3r1q1ZWlrK5s2bs23bttFxgMNwsHPC/jLJR5JsTPKyFes/leTdU4YCYD5LS0vZvXv36BjAvXCwc8JuTnJzkm9dvTgAAOvDIc8Jq6qHV9U1VfXpqrq9qu6sqk+uRjgAgEU1z4n5L09yQZK/TXJCkh9LcsmUoQAAFt0hH+CdJN29s6o2dPedSV5VVdcled600QDWlrc+4pGjI9zD547dkFTlc7t2ral8j3ybuxhx5CzqBSjzlLDPVtVxSa6vqm1ZPll/nhE0AIAv2qJegDJPmXpKkg1JLkrymSSnJvn+KUMBACy6Q46Eza6STJLPJXnhtHEAANaHg92s9T3Zz4O79+ruB0+SCIC5PaD7bq/A0eNgI2GPW7UUANwrT77zrtERgHvpUDdrTZJU1Zcn+ZbZ4l93961TBwMAWGTz3Kz1B5L8dZInJvmBJFdX1ROmDgYAsMjmuUXF85N8y97Rr6ralORPk1wxZTAAgEU2zy0qjtln+vGjc/4eAAAHMM9I2B9V1VVJXjtb/sEk26eLBACw+Oa5T9hzq+rxSb59turS7n79tLEAABbbIUtYVT0nye929+tWIQ8AwLowz7ldJyX546r686q6aHa7CgAAvgiHLGHd/cLu/vokz0jyFUneWlV/OnkyAIAFdjhXOd6aZCnLV0f+62niAACsD/PcrPW/VNVbkvxZki9L8nTPjQQA+OLMc4uKU5M8q7uvnzoMAMB6Mc8tKp63GkEAANYTd74HABhgnulIAGBm69atWVpayubNm7Nt27bRcTiKKWEAcBiWlpaye/fu0TEm89+f/ITREe7hY7d+Yvl16SNrKt/zf/uKL+r3TUcCAAyghAEADDBpCauqc6rqA1W1s6ouPsh+319VXVVbpswDALBWTFbCqmpDkkuSnJvkzCQXVNWZ+9nvpCTPTHL1VFkAANaaKU/MPyvJzu6+KUmq6rIk5yd53z77/XySFyd57oRZADgKvfyn3zA6wj18/LbP/PPrWsp30cu+b3QEDtOU05EnJ7llxfKu2bp/VlUPS3Jqd/+/CXMAAKw5w07Mr6pjkvzPJD89x74XVtWOqtqxZ8+e6cMBAExsyhK2O8vPndzrlNm6vU5K8g1J3lJVH0ry8CRX7u/k/O6+tLu3dPeWTZs2TRgZAGB1TFnCrklyRlWdXlXHJXlSkiv3buzuT3T3xu4+rbtPS/KOJOd1944JMwEArAmTlbDuviPJRUmuSnJjksu7+4aqelFVnTfV9wIAHA0mfWxRd29Psn2fdS84wL6PmjILAMBa4tmRAHAYTjzufnd7hXtLCQOAw3D21zx+dAQWhGdHAgAMoIQBAAyghAEADKCEAQAM4MR8AGBNO37DMXd7XRRKGACwpj30y04aHWESi1UpAQCOEkoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAShgAwABKGADAAEoYAMAAk5awqjqnqj5QVTur6uL9bH9OVb2vqt5dVX9WVV89ZR4AgLVishJWVRuSXJLk3CRnJrmgqs7cZ7frkmzp7gcnuSLJtqnyAACsJVOOhJ2VZGd339Tdtye5LMn5K3fo7jd392dni+9IcsqEeQAA1owpS9jJSW5Zsbxrtu5AnpbkjfvbUFUXVtWOqtqxZ8+eIxgRAGCMNXFiflU9OcmWJC/Z3/buvrS7t3T3lk2bNq1uOACACRw74WfvTnLqiuVTZuvupqq+K8nzkzyyu/9pwjwAAGvGlCNh1yQ5o6pOr6rjkjwpyZUrd6iqhyb530nO6+5bJ8wCALCmTFbCuvuOJBcluSrJjUku7+4bqupFVXXebLeXJPlXSX6vqq6vqisP8HEAAAtlyunIdPf2JNv3WfeCFe+/a8rvBwBYq9bEifkAAOuNEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwgBIGADCAEgYAMIASBgAwwKQlrKrOqaoPVNXOqrp4P9u/pKp+d7b96qo6bco8AABrxWQlrKo2JLkkyblJzkxyQVWduc9uT0vyj939b5P8QpIXT5UHAGAtmXIk7KwkO7v7pu6+PcllSc7fZ5/zk7x69v6KJI+uqpowEwDAmjBlCTs5yS0rlnfN1u13n+6+I8knknzZhJkAANaE6u5pPrjqCUnO6e4fmy0/Jcm/7+6LVuzz3tk+u2bLfzfb57Z9PuvCJBfOFh+U5AOThJ7exiS3HXIvjiTHfPU55qvPMV99jvnqO1qP+Vd396b9bTh2wi/dneTUFcunzNbtb59dVXVskvsn+ei+H9Tdlya5dKKcq6aqdnT3ltE51hPHfPU55qvPMV99jvnqW8RjPuV05DVJzqiq06vquCRPSnLlPvtcmeRHZu+fkORNPdXQHADAGjLZSFh331FVFyW5KsmGJL/e3TdU1YuS7OjuK5P8WpLfqqqdST6W5aIGALDwppyOTHdvT7J9n3UvWPH+80meOGWGNeaon1I9Cjnmq88xX32O+epzzFffwh3zyU7MBwDgwDy2CABgACVsYlV1fFX9dVW9q6puqKoXjs60XlTVhqq6rqr+cHSW9aCqPlRV76mq66tqx+g860FVPaCqrqiq91fVjVX1raMzLbKqetDs3++9P5+sqmeNzrXoqurZs/9/vreqXltVx4/OdKSYjpzY7AkAJ3b3p6vqPkn+Iskzu/sdg6MtvKp6TpItSe7X3Y8bnWfRVdWHkmzZ9z5/TKeqXp3kz7v7lbOr0O/b3R8fnWs9mD2ab3eW72158+g8i6qqTs7y/zfP7O7PVdXlSbZ392+MTXZkGAmbWC/79GzxPrMfzXdiVXVKku9N8srRWWAKVXX/JI/I8lXm6e7bFbBV9egkf6eArYpjk5wwu5/ofZP8/eA8R4wStgpm02LXJ7k1yZ9099WjM60Dv5hka5K7RgdZRzrJH1fVtbOnXDCt05PsSfKq2bT7K6vqxNGh1pEnJXnt6BCLrrt3J3lpkg8n+UiST3T3H49NdeQoYaugu+/s7odk+akBZ1XVN4zOtMiq6nFJbu3ua0dnWWe+vbsfluTcJM+oqkeMDrTgjk3ysCS/0t0PTfKZJBePjbQ+zKZ+z0vye6OzLLqqemCS87P8R8dXJjmxqp48NtWRo4StotlUwZuTnDM6y4I7O8l5s3OULkvynVX122MjLb7ZX6zp7luTvD7JWWMTLbxdSXatGFm/IsuljOmdm+Sd3f0Po4OsA9+V5IPdvae7v5DkdUm+bXCmI0YJm1hVbaqqB8zen5DkMUnePzbVYuvu53X3Kd19WpanDN7U3Qvzl9NaVFUnVtVJe98n+e4k7x2barF191KSW6rqQbNVj07yvoGR1pMLYipytXw4ycOr6r6zC90eneTGwZmOmEnvmE+S5CuSvHp2Jc0xSS7vbrdMYNF8eZLXL/83MscmeU13/9HYSOvCTyb5ndn02E1Jnjo4z8Kb/ZHxmCQ/PjrLetDdV1fVFUnemeSOJNdlge6c7xYVAAADmI4EABhACQMAGEAJAwAYQAkDABhACQMAGEAJA5ipqtOq6r2z91uq6pdm7x9VVQtzg0hgbXCfMID96O4dSXbMFh+V5NNJ/nJYIGDhGAkDFkJVPb+q/qaq/qKqXltVP1NVb6mqLbPtG2ePsto74vXnVfXO2c89Rrlmo19/WFWnJfmJJM+uquur6juq6oNVdZ/ZfvdbuQwwLyNhwFGvqr45y4+oekiW/7v2ziQHe4D7rUke092fr6ozsvwImi3727G7P1RVv5rk09390tn3vSXJ9yb5/dn3vm72XDuAuRkJAxbBdyR5fXd/trs/meTKQ+x/nyT/p6rek+T3kpx5mN/3yvzLI4KemuRVh/n7AEbCgIV2R/7lj83jV6x/dpJ/SPJNs+2fP5wP7e63z6Y0H5VkQ3d7WDlw2IyEAYvgbUn+Q1WdUFUnJfm+2foPJfnm2fsnrNj//kk+0t13JXlKkg2H+PxPJTlpn3W/meQ1MQoG3EtKGHDU6+53JvndJO9K8sYk18w2vTTJf66q65JsXPErr0jyI1X1riRfl+Qzh/iKNyT5j3tPzJ+t+50kD8zy+WQAh626e3QGgCOqqn4uK06kn+g7npDk/O5+ylTfASw254QBHKaq+uUk5yZ57OgswNHLSBgAwADOCQMAGEAJAwAYQAkDABhACQMAGEAJAwAYQAkDABjg/wPirYE4+7Ki1QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "tags": [], "needs_background": "light" } } ] }, { "cell_type": "markdown", "metadata": { "id": "M4hd_N8EgH57" }, "source": [ "## 3.4. zbiór Dev (bash)" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 419 }, "id": "XT3hrfW3gOxH", "outputId": "98ef6303-7f2b-4341-e6ad-c19af8750ccc" }, "source": [ "wine_dev_bash" ], "execution_count": 22, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
08.00.7050.051.90.0748.019.00.996203.340.9510.56
17.60.6650.101.50.06627.055.00.996553.390.519.35
27.80.5500.352.20.07421.066.00.997403.250.569.25
313.00.3200.652.60.09315.047.00.999603.050.6110.65
48.80.6100.302.80.08817.046.00.997603.260.519.34
.......................................
26113.80.4900.673.00.0936.015.00.998603.020.9312.06
2627.10.7500.012.20.05911.018.00.992423.390.4012.86
2639.90.3500.412.30.08311.061.00.998203.210.509.55
2646.50.5200.111.80.07313.038.00.995503.340.529.35
2656.80.6700.001.90.08022.039.00.997013.400.749.75
\n", "

266 rows × 12 columns

\n", "
" ], "text/plain": [ " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n", "0 8.0 0.705 0.05 ... 0.95 10.5 6\n", "1 7.6 0.665 0.10 ... 0.51 9.3 5\n", "2 7.8 0.550 0.35 ... 0.56 9.2 5\n", "3 13.0 0.320 0.65 ... 0.61 10.6 5\n", "4 8.8 0.610 0.30 ... 0.51 9.3 4\n", ".. ... ... ... ... ... ... ...\n", "261 13.8 0.490 0.67 ... 0.93 12.0 6\n", "262 7.1 0.750 0.01 ... 0.40 12.8 6\n", "263 9.9 0.350 0.41 ... 0.50 9.5 5\n", "264 6.5 0.520 0.11 ... 0.52 9.3 5\n", "265 6.8 0.670 0.00 ... 0.74 9.7 5\n", "\n", "[266 rows x 12 columns]" ] }, "metadata": { "tags": [] }, "execution_count": 22 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "lhRktuxPgOsC", "outputId": "612e6163-0b66-4495-fdc1-2a0813efe37e" }, "source": [ "wine_dev_bash[\"quality\"].value_counts()" ], "execution_count": 23, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "5 115\n", "6 113\n", "7 24\n", "4 9\n", "8 3\n", "3 2\n", "Name: quality, dtype: int64" ] }, "metadata": { "tags": [] }, "execution_count": 23 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 297 }, "id": "FmOQIZMSgOnK", "outputId": "a7f4b4e8-36a0-4a07-cce4-98caa71ff7d0" }, "source": [ "wine_dev_bash.describe(include='all')" ], "execution_count": 24, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
count266.000000266.000000266.000000266.000000266.000000266.000000266.000000266.000000266.000000266.000000266.000000266.000000
mean8.2736840.5400750.2530082.5233080.08862015.39849643.9736840.9967493.3178950.64977410.4533215.590226
std1.7205920.1938560.1903301.3804980.05582510.00221930.5187120.0019300.1520030.1769301.0580100.777841
min4.9000000.1200000.0000001.3000000.0120001.0000008.0000000.9906402.8700000.3300008.5000003.000000
25%7.1000000.3962500.0800001.9000000.0682508.00000020.0000000.9955253.2100000.5425009.5000005.000000
50%7.9000000.5200000.2400002.2000000.07900013.00000037.0000000.9967203.3200000.62000010.2000006.000000
75%9.2000000.6487500.3900002.6000000.09000020.00000060.0000000.9978773.4300000.72000011.2000006.000000
max15.6000001.5800000.76000013.8000000.61100066.000000141.0000001.0031503.7200001.95000014.0000008.000000
\n", "
" ], "text/plain": [ " fixed acidity volatile acidity ... alcohol quality\n", "count 266.000000 266.000000 ... 266.000000 266.000000\n", "mean 8.273684 0.540075 ... 10.453321 5.590226\n", "std 1.720592 0.193856 ... 1.058010 0.777841\n", "min 4.900000 0.120000 ... 8.500000 3.000000\n", "25% 7.100000 0.396250 ... 9.500000 5.000000\n", "50% 7.900000 0.520000 ... 10.200000 6.000000\n", "75% 9.200000 0.648750 ... 11.200000 6.000000\n", "max 15.600000 1.580000 ... 14.000000 8.000000\n", "\n", "[8 rows x 12 columns]" ] }, "metadata": { "tags": [] }, "execution_count": 24 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 405 }, "id": "j3Z6noeZgOjC", "outputId": "de24703b-50d4-4059-d5e6-ddc0c0f3356c" }, "source": [ "fig = plt.figure(figsize = (10,6))\n", "sns.barplot(x = 'quality', y = 'volatile acidity', data = wine_dev_bash)" ], "execution_count": 25, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": { "tags": [] }, "execution_count": 25 }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAFzCAYAAAB2A95GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAa8klEQVR4nO3de7SddX3n8feHhIgwINZkiiVgaCdosd6PeMEqU7QGVJgqWmLFy1LTzhjrrWZwOYMVO7OWQUdbRZ2UIl5BpKjBieJUBawW5KCIXMRJUSApxwQQL3jBwHf+ODvtyTHnnB2S5/z22ef9WuusvZ/n+Z29P+zFgs/5Pc/+PakqJEmSNLv2ah1AkiRpPrKESZIkNWAJkyRJasASJkmS1IAlTJIkqQFLmCRJUgMLWwfYVYsXL65ly5a1jiFJkjSjK6+88raqWrKzY3OuhC1btozR0dHWMSRJkmaU5Kapjnk6UpIkqQFLmCRJUgOWMEmSpAYsYZIkSQ1YwiRJkhqwhEmSJDXQWQlLclaSLUmumWbM0UmuSnJtkku6yiJJkjRoupwJOxtYMdXBJAcC7wOOr6qHA8/vMIskSdJA6ayEVdWlwB3TDHkhcEFV3dwbv6WrLJIkSYOm5TVhhwMPTHJxkiuTvHiqgUlWJRlNMrp169ZZjChJktSNliVsIfA44FnAM4H/nuTwnQ2sqnVVNVJVI0uW7PT2S5IkSXNKy3tHbgJur6q7gLuSXAo8Cvhuw0ySJEmzomUJ+wzw3iQLgUXAE4B3NczTqTVr1jA2NsZBBx3E2rVrW8eRJEmNdVbCkpwDHA0sTrIJeAuwN0BVfaCqrk/yeeBq4F7gzKqacjmLuW5sbIzNmze3jiFJkgZEZyWsqlb2MeZ04PSuMkiSJA0qV8yXJElqwBImSZLUgCVMkiSpAUuYJElSA5YwSZKkBixhkiRJDVjCJEmSGrCESZIkNWAJkyRJasASJkmS1IAlTJIkqQFLmCRJUgOWMEmSpAYsYZIkSQ1YwiRJkhqwhEmSJDVgCZMkSWrAEiZJktSAJUySJKkBS5gkSVIDljBJkqQGLGGSJEkNWMIkSZIasIRJkiQ1YAmTJElqwBImSZLUgCVMkiSpAUuYJElSA5YwSZKkBixhkiRJDXRWwpKclWRLkmtmGPf4JNuSnNhVFkmSpEHT5UzY2cCK6QYkWQC8HfhChzkkSZIGTmclrKouBe6YYdirgb8HtnSVQ5IkaRA1uyYsycHAHwHvb5VBkiSplZYX5r8b+K9Vde9MA5OsSjKaZHTr1q2zEE2SJKlbCxu+9whwbhKAxcBxSbZV1acnD6yqdcA6gJGRkZrVlJIkSR1oVsKq6rDtz5OcDXx2ZwVMkiRpGHVWwpKcAxwNLE6yCXgLsDdAVX2gq/eVJEmaCzorYVW1chfGvrSrHJIkSYPIFfMlSZIasIRJkiQ1YAmTJElqwBImSZLUgCVMkiSpAUuYJElSA5YwSZKkBixhkiRJDVjCJEmSGrCESZIkNWAJkyRJasASJkmS1IAlTJIkqQFLmCRJUgMLWwfoyuPe+OHWEXaw/20/YQFw820/GahsV57+4tYRJEmal5wJkyRJasASJkmS1IAlTJIkqQFLmCRJUgOWMEmSpAYsYZIkSQ1YwiRJkhqwhEmSJDVgCZMkSWrAEiZJktSAJUySJKkBS5gkSVIDljBJkqQGLGGSJEkNWMIkSZIa6KyEJTkryZYk10xx/E+SXJ3k20m+luRRXWWRJEkaNF3OhJ0NrJjm+PeAp1XVI4C3Aes6zCJJkjRQFnb1wlV1aZJl0xz/2oTNy4ClXWWRJEkaNINyTdjLgc+1DiFJkjRbOpsJ61eS/8h4CXvKNGNWAasADj300FlKJkmS1J2mM2FJHgmcCZxQVbdPNa6q1lXVSFWNLFmyZPYCSpIkdaRZCUtyKHABcHJVfbdVDkmSpBY6Ox2Z5BzgaGBxkk3AW4C9AarqA8CpwIOA9yUB2FZVI13lkSRJGiRdfjty5QzHXwG8oqv3lyRJGmSD8u1ISZKkecUSJkmS1IAlTJIkqQFLmCRJUgOWMEmSpAYsYZIkSQ1YwiRJkhqwhEmSJDVgCZMkSWrAEiZJktSAJUySJKkBS5gkSVIDljBJkqQGLGGSJEkNWMIkSZIasIRJkiQ1YAmTJElqwBImSZLUgCVMkiSpAUuYJElSA5YwSZKkBixhkiRJDVjCJEmSGrCESZIkNWAJkyRJasASJkmS1IAlTJIkqQFLmCRJUgOWMEmSpAYsYZIkSQ1YwiRJkhrorIQlOSvJliTXTHE8Sf4mycYkVyd5bFdZBsG9i/bjnvsdwL2L9msdRZIkDYCFHb722cB7gQ9PcfxYYHnv5wnA+3uPQ+mu5X/YOoIkSRogM86EJbkyyauSPHBXXriqLgXumGbICcCHa9xlwIFJHrwr7yFJkjRX9XM68o+B3wKuSHJukmcmyR5474OBWyZsb+rt+zVJViUZTTK6devWPfDWkiRJbc1YwqpqY1W9GTgc+DhwFnBTkrcm+Y2uA/YyrKuqkaoaWbJkyWy8pSRJUqf6ujA/ySOBdwKnA38PPB/4MfCl3XjvzcAhE7aX9vZJkiQNvRkvzE9yJXAn8HfAKVX1y96hy5MctRvvvR5YneRcxi/I/1FV3bobrydJkjRn9PPtyOdX1Y0TdyQ5rKq+V1XPneqXkpwDHA0sTrIJeAuwN0BVfQDYABwHbAR+BrzsPv0TSFNYs2YNY2NjHHTQQaxdu7Z1HEmSdtBPCTsfmLyG1/nA46b7papaOcPxAl7Vx/tL98nY2BibN3uGW5I0mKYsYUkeBjwceECSiTNeBwD7dB1MkiRpmE03E/ZQ4NnAgcBzJuz/CfDKLkNJkiQNuylLWFV9BvhMkidV1T/NYiZJkqShN93pyDVVtRZ4YZJfu76rqv6802SSJElDbLrTkdf3HkdnI4gkSdJ8Mt3pyAt7jx+avTiSJEnzw3SnIy8EaqrjVXV8J4kkSZLmgelOR76j9/hc4CDgo73tlcAPugwlSZI07KY7HXkJQJJ3VtXIhEMXJvE6MUmSpN3Qzw2890vy29s3khwG7NddJEmSpOHXz22LXgdcnORGIMBDgD/tNJUkSdKQm7GEVdXnkywHHtbb9Z2q+mW3sSRJkobbdN+O/IOq+tKk+0YC/E4SquqCjrNJkiQNrelmwp4GfIkd7xu5XQGWMEmSpPtoum9HvqX3+LLZiyNJkjQ/zPjtyCT/M8mBE7YfmOSvuo0lSZI03PpZouLYqrpz+0ZV/RA4rrtIkiRJw6+fErYgyf22byS5P3C/acZLkiRpBv2sE/Yx4ItJPtjbfhngTb0lSZJ2Qz/rhL09ydXAMb1db6uqi7qNJUmSNNz6mQmjqj4HfK7jLJIkSfNGP9+OfGKSK5L8NMndSe5J8uPZCCdJkjSs+pkJey9wEvBJYAR4MXB4l6E0N9182iNaR9jBtjt+A1jItjtuGqhsh5767dYRJEkDoJ9vR1JVG4EFVXVPVX0QWNFtLEmSpOHWz0zYz5IsAq5Ksha4lT7LmyRJknaunzJ1cm/cauAu4BDgeV2GkiRJGnb9LFFxU+/pL4C3dhtHkiRpfvC0oiRJUgOWMEmSpAb6LmFJ9u0yiCRJ0nzSz2KtT05yHfCd3vajkryvnxdPsiLJDUk2JjllJ8cPTfLlJN9McnWS43b5n0CSJGkO6mcm7F3AM4HbAarqW8BTZ/qlJAuAM4BjgSOAlUmOmDTsvwHnVdVjGF8Qtq9yJ0mSNNf1u1jrLZN23dPHrx0JbKyqG6vqbuBc4ITJLw0c0Hv+AOBf+skjSZI01/WzWOstSZ4MVJK9gdcA1/fxewcDE8vbJuAJk8b8JfCFJK8G9gOe3sfrSpIkzXn9zIT9GfAqxkvVZuDRve09YSVwdlUtBY4DPpLk1zIlWZVkNMno1q1b99BbS5IktdPPYq23AX9yH157M+Or62+3tLdvopfTuw9lVf1Tkn2AxcCWSRnWAesARkZG6j5kkSRJGihTlrAk72H8mq2dqqo/n+G1rwCWJzmM8fJ1EvDCSWNuBo4Bzk7yu8A+gFNdkiRp6E03Eza6Oy9cVduSrAYuAhYAZ1XVtUlOA0araj3wBuBvk7yO8cL30qpypkuSJA29KUtYVX1od1+8qjYAGybtO3XC8+uAo3b3fSRJkuaa6U5HvruqXpvkQnZyWrKqju80mSRJ0hCb7nTkR3qP75iNIJIkSfPJdKcjr+w9fXRV/fXEY0leA1zSZTBJkqRh1s86YS/Zyb6X7uEckiRJ88p014StZHxJicOSrJ9waH/gjq6DSZIkDbPprgn7GnAr44unvnPC/p8AV3cZSpIkadhNd03YTcBNwJNmL4605yze515gW+9RkqTBMuNti5I8EXgP8LvAIsYXXr2rqg7oOJu0W/7ikXe2jiBJ0pT6uTD/vYzfaPv/AfcHXgGc0WUoSZKkYddPCaOqNgILquqeqvogvZtuS5Ik6b6Z8XQk8LMki4Crkqxl/GL9vsqbJEmSdq6fMnUy49eBrQbuAg4BntdlKEmSpGE340xY71uSAD8H3tptHEmSpPlhusVav81Obty9XVU9spNEkiRJ88B0M2HPnrUUkiRJ88xMi7UCkOQ3gcf3Nr9eVVu6DiZJkjTMZrwwP8kLgK8DzwdeAFye5MSug0mSJA2zfpaoeDPw+O2zX0mWAP8AnN9lMEmSpGHWzxIVe006/Xh7n78nSZKkKfQzE/b5JBcB5/S2/xjY0F0kSZKk4dfPOmFvTPJc4Cm9Xeuq6lPdxpIkSRpuM5awJK8HPlFVF8xCHkmSpHmhn2u79ge+kOQrSVb3lquQJEnSbpixhFXVW6vq4cCrgAcDlyT5h86TSZIkDbFd+ZbjFmCM8W9H/vtu4kiSJM0P/SzW+l+SXAx8EXgQ8ErvGylJkrR7+lmi4hDgtVV1VddhJEmS5ot+lqh402wEkSRJmk9c+V6SJKkBS5gkSVIDnZawJCuS3JBkY5JTphjzgiTXJbk2yce7zCNJkjQo+rkw/z5JsgA4A3gGsAm4Isn6qrpuwpjlwJuAo6rqh0lc+kKSJM0LXc6EHQlsrKobq+pu4FzghEljXgmcUVU/BKiqLR3mkSRJGhhdlrCDgVsmbG/q7ZvocODwJF9NclmSFR3mkSRJGhidnY7chfdfDhwNLAUuTfKIqrpz4qAkq4BVAIceeuhsZ5TUpzVr1jA2NsZBBx3E2rVrW8eRpIHW5UzYZsYXet1uaW/fRJuA9VX1q6r6HvBdxkvZDqpqXVWNVNXIkiVLOgssafeMjY2xefNmxsbGWkeRpIHXZQm7Alie5LAki4CTgPWTxnya8Vkwkixm/PTkjR1mkiRJGgidlbCq2gasBi4CrgfOq6prk5yW5PjesIuA25NcB3wZeGNV3d5VJkmSpEHR6TVhVbUB2DBp36kTnhfw+t6PJEnSvOGK+ZIkSQ20/nakpN1w1HuOah1hB4vuXMRe7MUtd94yUNm++uqvto4gSb/GmTBJkqQGLGGSJEkNWMIkSZIasIRJkiQ14IX5kjSHeasoae6yhEnSHLb9VlGS5h5LmKQ9pvYt7uVeat9qHUWSBp4lTNIe86ujftU6giTNGV6YL0mS1IAlTJIkqQFLmCRJUgNeEyZJu+CSpz6tdYQd/HzhAkj4+aZNA5XtaZde0jqCNPCcCZMkSWrAEiZJktSAJUySJKkBS5gkSVIDXpgvSdIu8H6d2lMsYZIk7QLv16k9xdORkiRJDTgTJklz2IFVOzxKmjssYZI0h73onntbR5B0H3k6UpIkqQFLmCRJUgOWMEmSpAYsYZIkSQ1YwiRJkhqwhEmSJDXgEhWSJGmgDeutoixhkiRpoA3rraI6PR2ZZEWSG5JsTHLKNOOel6SSjHSZR5IkaVB0NhOWZAFwBvAMYBNwRZL1VXXdpHH7A68BLu8qiyRp7nrvGy5sHWEHd952178+DlK21e98TusI2kVdzoQdCWysqhur6m7gXOCEnYx7G/B24BcdZpEkSRooXZawg4FbJmxv6u37V0keCxxSVf9nuhdKsirJaJLRrVu37vmkkiRJs6zZEhVJ9gL+F/CGmcZW1bqqGqmqkSVLlnQfTpIkqWNdfjtyM3DIhO2lvX3b7Q/8HnBxEoCDgPVJjq+q0Q5zSZKkafyPF53YOsIO7tjyo/HHsVsHKtubP3r+bv1+lzNhVwDLkxyWZBFwErB++8Gq+lFVLa6qZVW1DLgMsIBJkqR5obMSVlXbgNXARcD1wHlVdW2S05Ic39X7SpIkzQWdLtZaVRuADZP2nTrF2KO7zCJJkjRIvHekJElSA5YwSZKkBixhkiRJDVjCJEmSGuj0wnxJkobNfosO2OFRuq8sYZIk7YKjfue5rSNoSHg6UpIkqQFLmCRJUgOWMEmSpAa8JkySJA20fRbstcPjsLCESZKkgfaYB+3fOkInhqtSSpIkzRGWMEmSpAYsYZIkSQ1YwiRJkhqwhEmSJDVgCZMkSWrAEiZJktSAJUySJKkBS5gkSVIDljBJkqQGLGGSJEkNWMIkSZIasIRJkiQ1YAmTJElqwBImSZLUgCVMkiSpAUuYJElSA5YwSZKkBixhkiRJDXRawpKsSHJDko1JTtnJ8dcnuS7J1Um+mOQhXeaRJEkaFJ2VsCQLgDOAY4EjgJVJjpg07JvASFU9EjgfWNtVHkmSpEHS5UzYkcDGqrqxqu4GzgVOmDigqr5cVT/rbV4GLO0wjyRJ0sDosoQdDNwyYXtTb99UXg58bmcHkqxKMppkdOvWrXswoiRJUhsDcWF+khcBI8DpOzteVeuqaqSqRpYsWTK74SRJkjqwsMPX3gwcMmF7aW/fDpI8HXgz8LSq+mWHeSRJkgZGlzNhVwDLkxyWZBFwErB+4oAkjwH+N3B8VW3pMIskSdJA6ayEVdU2YDVwEXA9cF5VXZvktCTH94adDvw74JNJrkqyfoqXkyRJGipdno6kqjYAGybtO3XC86d3+f6SJEmDaiAuzJckSZpvLGGSJEkNWMIkSZIasIRJkiQ1YAmTJElqwBImSZLUgCVMkiSpAUuYJElSA5YwSZKkBixhkiRJDVjCJEmSGrCESZIkNWAJkyRJasASJkmS1IAlTJIkqQFLmCRJUgOWMEmSpAYsYZIkSQ1YwiRJkhqwhEmSJDVgCZMkSWrAEiZJktSAJUySJKkBS5gkSVIDljBJkqQGLGGSJEkNWMIkSZIasIRJkiQ1YAmTJElqwBImSZLUQKclLMmKJDck2ZjklJ0cv1+ST/SOX55kWZd5JEmSBkVnJSzJAuAM4FjgCGBlkiMmDXs58MOq+g/Au4C3d5VHkiRpkHQ5E3YksLGqbqyqu4FzgRMmjTkB+FDv+fnAMUnSYSZJkqSB0GUJOxi4ZcL2pt6+nY6pqm3Aj4AHdZhJkiRpIKSqunnh5ERgRVW9ord9MvCEqlo9Ycw1vTGbetv/3Btz26TXWgWs6m0+FLihk9DdWwzcNuMo7Ul+5rPPz3z2+ZnPPj/z2TdXP/OHVNWSnR1Y2OGbbgYOmbC9tLdvZ2M2JVkIPAC4ffILVdU6YF1HOWdNktGqGmmdYz7xM599fuazz8989vmZz75h/My7PB15BbA8yWFJFgEnAesnjVkPvKT3/ETgS9XV1JwkSdIA6WwmrKq2JVkNXAQsAM6qqmuTnAaMVtV64O+AjyTZCNzBeFGTJEkael2ejqSqNgAbJu07dcLzXwDP7zLDgJnzp1TnID/z2ednPvv8zGefn/nsG7rPvLML8yVJkjQ1b1skSZLUgCWsY0n2SfL1JN9Kcm2St7bONF8kWZDkm0k+2zrLfJDk+0m+neSqJKOt88wHSQ5Mcn6S7yS5PsmTWmcaZkke2vv3e/vPj5O8tnWuYZfkdb3/f16T5Jwk+7TOtKd4OrJjvTsA7FdVP02yN/CPwGuq6rLG0YZektcDI8ABVfXs1nmGXZLvAyOT1/lTd5J8CPhKVZ3Z+xb6vlV1Z+tc80Hv1nybGV/b8qbWeYZVkoMZ///mEVX18yTnARuq6uy2yfYMZ8I6VuN+2tvcu/dj8+1YkqXAs4AzW2eRupDkAcBTGf+WOVV1twVsVh0D/LMFbFYsBO7fW090X+BfGufZYyxhs6B3WuwqYAvwf6vq8taZ5oF3A2uAe1sHmUcK+EKSK3t3uVC3DgO2Ah/snXY/M8l+rUPNIycB57QOMeyqajPwDuBm4FbgR1X1hbap9hxL2Cyoqnuq6tGM3zXgyCS/1zrTMEvybGBLVV3ZOss885SqeixwLPCqJE9tHWjILQQeC7y/qh4D3AWc0jbS/NA79Xs88MnWWYZdkgcCJzD+R8dvAfsleVHbVHuOJWwW9U4VfBlY0TrLkDsKOL53jdK5wB8k+WjbSMOv9xcrVbUF+BRwZNtEQ28TsGnCzPr5jJcyde9Y4BtV9YPWQeaBpwPfq6qtVfUr4ALgyY0z7TGWsI4lWZLkwN7z+wPPAL7TNtVwq6o3VdXSqlrG+CmDL1XV0PzlNIiS7Jdk/+3PgT8ErmmbarhV1RhwS5KH9nYdA1zXMNJ8shJPRc6Wm4EnJtm390W3Y4DrG2faYzpdMV8APBj4UO+bNHsB51WVSyZo2Pwm8Knx/0ayEPh4VX2+baR54dXAx3qnx24EXtY4z9Dr/ZHxDOBPW2eZD6rq8iTnA98AtgHfZIhWzneJCkmSpAY8HSlJktSAJUySJKkBS5gkSVIDljBJkqQGLGGSJEkNWMIkaYIky5Jc03s+kuRves+PTjI0i0RKas91wiRpClU1Coz2No8Gfgp8rVkgSUPFmTBJQyPJm5N8N8k/JjknyV8kuTjJSO/44t7trLbPeH0lyTd6P782y9Wb/fpskmXAnwGvS3JVkt9P8r0ke/fGHTBxW5L64UyYpKGQ5HGM36bq0Yz/t+0bwHQ3cd8CPKOqfpFkOeO3oRnZ2cCq+n6SDwA/rap39N7vYuBZwKd773tB7952ktQXZ8IkDYvfBz5VVT+rqh8D62cYvzfwt0m+DXwSOGIX3+9M/u02QS8DPriLvy9pnnMmTNKw28a//cG5z4T9rwN+ADyqd/wXu/KiVfXV3inNo4EFVeUNyyXtEmfCJA2LS4H/lOT+SfYHntPb/33gcb3nJ04Y/wDg1qq6FzgZWDDD6/8E2H/Svg8DH8dZMEn3gSVM0lCoqm8AnwC+BXwOuKJ36B3Af07yTWDxhF95H/CSJN8CHgbcNcNbXAj80fYL83v7PgY8kPHrySRpl6SqWmeQpD0uyV8y4UL6jt7jROCEqjq5q/eQNLy8JkyS7oMk7wGOBY5rnUXS3ORMmCRJUgNeEyZJktSAJUySJKkBS5gkSVIDljBJkqQGLGGSJEkNWMIkSZIa+P9U9VvccsmxpAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "tags": [], "needs_background": "light" } } ] }, { "cell_type": "markdown", "metadata": { "id": "ftWOC-do2Pq-" }, "source": [ "# 4. Normalizacja" ] }, { "cell_type": "markdown", "metadata": { "id": "Wm0EM2hj4s6V" }, "source": [ "Normalizacja kolumny 'quality' na wartości od 0 do 20. Nie jest ona konieczna ale została stworzona w celach demonstracyjnych" ] }, { "cell_type": "code", "metadata": { "id": "EkZQ6Hpy2Tj_" }, "source": [ "wine[\"quality\"]=((wine[\"quality\"]-wine[\"quality\"].min())/(wine[\"quality\"].max()-wine[\"quality\"].min()))*20" ], "execution_count": 26, "outputs": [] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 419 }, "id": "_bQgYfct3Tir", "outputId": "8b50d411-b47b-4d4d-d3eb-606d7c134de0" }, "source": [ "wine" ], "execution_count": 27, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
07.40.7000.001.90.07611.034.00.997803.510.569.48.0
17.80.8800.002.60.09825.067.00.996803.200.689.88.0
27.80.7600.042.30.09215.054.00.997003.260.659.88.0
311.20.2800.561.90.07517.060.00.998003.160.589.812.0
47.40.7000.001.90.07611.034.00.997803.510.569.48.0
.......................................
15946.20.6000.082.00.09032.044.00.994903.450.5810.58.0
15955.90.5500.102.20.06239.051.00.995123.520.7611.212.0
15966.30.5100.132.30.07629.040.00.995743.420.7511.012.0
15975.90.6450.122.00.07532.044.00.995473.570.7110.28.0
15986.00.3100.473.60.06718.042.00.995493.390.6611.012.0
\n", "

1599 rows × 12 columns

\n", "
" ], "text/plain": [ " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n", "0 7.4 0.700 0.00 ... 0.56 9.4 8.0\n", "1 7.8 0.880 0.00 ... 0.68 9.8 8.0\n", "2 7.8 0.760 0.04 ... 0.65 9.8 8.0\n", "3 11.2 0.280 0.56 ... 0.58 9.8 12.0\n", "4 7.4 0.700 0.00 ... 0.56 9.4 8.0\n", "... ... ... ... ... ... ... ...\n", "1594 6.2 0.600 0.08 ... 0.58 10.5 8.0\n", "1595 5.9 0.550 0.10 ... 0.76 11.2 12.0\n", "1596 6.3 0.510 0.13 ... 0.75 11.0 12.0\n", "1597 5.9 0.645 0.12 ... 0.71 10.2 8.0\n", "1598 6.0 0.310 0.47 ... 0.66 11.0 12.0\n", "\n", "[1599 rows x 12 columns]" ] }, "metadata": { "tags": [] }, "execution_count": 27 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "I1AwZoyN4RHs", "outputId": "15a7bca4-8bbe-4749-80b8-5eede667aa07" }, "source": [ "wine[\"quality\"].value_counts()" ], "execution_count": 28, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "8.0 681\n", "12.0 638\n", "16.0 199\n", "4.0 53\n", "20.0 18\n", "0.0 10\n", "Name: quality, dtype: int64" ] }, "metadata": { "tags": [] }, "execution_count": 28 } ] }, { "cell_type": "markdown", "metadata": { "id": "XBU3z_of414w" }, "source": [ "# 5. Usuwanie artefaktów" ] }, { "cell_type": "markdown", "metadata": { "id": "KCstRwQp5-X1" }, "source": [ "### Całe szczęscie nie ma w moim zbiorze ani pustych linijek, ani przykładów z niepoprawnymi wartościami" ] }, { "cell_type": "code", "metadata": { "id": "EJqksTP545UV" }, "source": [ "# Znajdźmy pustą linijkę:\n", "! grep -P \"^$\" -n winequality-red.csv" ], "execution_count": 29, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "8DuoPn3Fa0kP" }, "source": [ "Szukanie wartości \"NA\": https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "REYF2AWjz_lr", "outputId": "01c5cd70-a37e-433f-bde3-d0c855c96c2e" }, "source": [ "wine.isnull().sum()" ], "execution_count": 30, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "fixed acidity 0\n", "volatile acidity 0\n", "citric acid 0\n", "residual sugar 0\n", "chlorides 0\n", "free sulfur dioxide 0\n", "total sulfur dioxide 0\n", "density 0\n", "pH 0\n", "sulphates 0\n", "alcohol 0\n", "quality 0\n", "dtype: int64" ] }, "metadata": { "tags": [] }, "execution_count": 30 } ] }, { "cell_type": "code", "metadata": { "id": "RbkqNj9_akcU" }, "source": [ "wine.dropna(inplace=True) " ], "execution_count": 31, "outputs": [] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 419 }, "id": "4WylJo9malyG", "outputId": "95a9b3f4-a7f5-4f61-fdbe-918dbca2d72c" }, "source": [ "wine" ], "execution_count": 32, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
07.40.7000.001.90.07611.034.00.997803.510.569.48.0
17.80.8800.002.60.09825.067.00.996803.200.689.88.0
27.80.7600.042.30.09215.054.00.997003.260.659.88.0
311.20.2800.561.90.07517.060.00.998003.160.589.812.0
47.40.7000.001.90.07611.034.00.997803.510.569.48.0
.......................................
15946.20.6000.082.00.09032.044.00.994903.450.5810.58.0
15955.90.5500.102.20.06239.051.00.995123.520.7611.212.0
15966.30.5100.132.30.07629.040.00.995743.420.7511.012.0
15975.90.6450.122.00.07532.044.00.995473.570.7110.28.0
15986.00.3100.473.60.06718.042.00.995493.390.6611.012.0
\n", "

1599 rows × 12 columns

\n", "
" ], "text/plain": [ " fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n", "0 7.4 0.700 0.00 ... 0.56 9.4 8.0\n", "1 7.8 0.880 0.00 ... 0.68 9.8 8.0\n", "2 7.8 0.760 0.04 ... 0.65 9.8 8.0\n", "3 11.2 0.280 0.56 ... 0.58 9.8 12.0\n", "4 7.4 0.700 0.00 ... 0.56 9.4 8.0\n", "... ... ... ... ... ... ... ...\n", "1594 6.2 0.600 0.08 ... 0.58 10.5 8.0\n", "1595 5.9 0.550 0.10 ... 0.76 11.2 12.0\n", "1596 6.3 0.510 0.13 ... 0.75 11.0 12.0\n", "1597 5.9 0.645 0.12 ... 0.71 10.2 8.0\n", "1598 6.0 0.310 0.47 ... 0.66 11.0 12.0\n", "\n", "[1599 rows x 12 columns]" ] }, "metadata": { "tags": [] }, "execution_count": 32 } ] }, { "cell_type": "code", "metadata": { "id": "iqsJ9Bfngy-m" }, "source": [ "" ], "execution_count": null, "outputs": [] } ] }