36 lines
898 B
Python
36 lines
898 B
Python
import pandas as pd
|
|
import numpy as np
|
|
from os import path
|
|
from tensorflow import keras
|
|
import sys
|
|
import matplotlib.pyplot as plt
|
|
from sklearn.metrics import accuracy_score, classification_report
|
|
|
|
model = keras.models.load_model('saved_model.pb')
|
|
print('evaluating')
|
|
|
|
test_df =pd.read_csv('test.csv')
|
|
y_test = test_df.quality
|
|
x_test = test_df.drop(['quality'], axis= 1)
|
|
|
|
y_pred = model.predict(x_test)
|
|
|
|
y_pred = np.around(y_pred, decimals=0)
|
|
|
|
results = accuracy_score(y_test,y_pred)
|
|
with open('results.txt', 'a+', encoding="UTF-8") as f:
|
|
f.write(str(results) +"\n")
|
|
|
|
with open('results.txt', 'r', encoding="UTF-8") as f:
|
|
lines = f.readlines()
|
|
|
|
fig = plt.figure(figsize=(10,10))
|
|
|
|
chart = fig.add_subplot()
|
|
chart.set_ylabel("Accuracy")
|
|
chart.set_xlabel("Number of build")
|
|
x = np.arange(0, len(lines), 1)
|
|
y = [float(x) for x in lines]
|
|
print(y)
|
|
plt.plot(x,y,"ro")
|
|
plt.savefig("evaluation.png") |