84 lines
2.5 KiB
Python
84 lines
2.5 KiB
Python
'''
|
|
Zadanie na dzień 09.05.2021 nie jest możliwe do skończenia bez dostępu do Jenkinsa!
|
|
'''
|
|
|
|
|
|
|
|
|
|
from tensorflow.keras.models import Sequential, load_model
|
|
from tensorflow.keras.layers import Dense
|
|
from sklearn.metrics import accuracy_score, classification_report
|
|
import pandas as pd
|
|
from sklearn.model_selection import train_test_split
|
|
import wget
|
|
import numpy as np
|
|
from sacred.observers import MongoObserver
|
|
from sacred import Experiment
|
|
from datetime import datetime
|
|
import os
|
|
|
|
ex = Experiment("sacred_scopes", interactive=True)
|
|
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017',
|
|
db_name='sacred')) # Tutaj podajemy dane uwierzytelniające i nazwę bazy skonfigurowane w pliku .env podczas uruchamiania bazy.
|
|
# W przypadku instancji na Jenkinsie url będzie wyglądał następująco: mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017
|
|
|
|
@ex.config
|
|
def my_config():
|
|
train_size_param = 0.8
|
|
test_size_param = 0.2
|
|
|
|
@ex.capture
|
|
def prepare_model(train_size_param, test_size_param, _run):
|
|
_run.info["prepare_model_ts"] = str(datetime.now())
|
|
|
|
url = 'https://git.wmi.amu.edu.pl/s434788/ium_434788/raw/branch/master/winequality-red.csv'
|
|
wget.download(url, out='Zajęcia7/winequality-red.csv', bar=None)
|
|
|
|
wine=pd.read_csv('Zajęcia7/winequality-red.csv')
|
|
wine
|
|
|
|
y = wine.quality
|
|
y.head()
|
|
|
|
x = wine.drop(['quality'], axis= 1)
|
|
x.head()
|
|
|
|
x=((x-x.min())/(x.max()-x.min())) #Normalizacja
|
|
|
|
x_train, x_test, y_train, y_test = train_test_split(x,y , test_size=test_size_param, train_size=train_size_param, random_state=21)
|
|
|
|
def regression_model():
|
|
model = Sequential()
|
|
model.add(Dense(32,activation = "relu", input_shape = (x_train.shape[1],)))
|
|
model.add(Dense(64,activation = "relu"))
|
|
model.add(Dense(1,activation = "relu"))
|
|
|
|
model.compile(optimizer = "adam", loss = "mean_squared_error")
|
|
return model
|
|
|
|
model = regression_model()
|
|
model.fit(x_train, y_train, epochs = 600, verbose = 1)
|
|
|
|
model.save('Zajęcia7/saved_model')
|
|
|
|
y_pred = model.predict(x_test)
|
|
|
|
y_pred[:5]
|
|
|
|
y_pred = np.around(y_pred, decimals=0)
|
|
|
|
y_pred[:5]
|
|
|
|
print(accuracy_score(y_test, y_pred))
|
|
|
|
_run.info["Final Results: "] = classification_report(y_test,y_pred)
|
|
|
|
return(classification_report(y_test,y_pred))
|
|
|
|
@ex.main
|
|
def my_main(train_size_param, test_size_param):
|
|
print(prepare_model()) ## Nie musimy przekazywać wartości
|
|
|
|
|
|
r = ex.run()
|
|
ex.add_artifact("Zajęcia7/saved_model/saved_model.pb") |