88 lines
2.6 KiB
Python
88 lines
2.6 KiB
Python
from tensorflow.keras.models import Sequential, load_model
|
|
from tensorflow.keras.layers import Dense
|
|
from sklearn.metrics import accuracy_score, classification_report
|
|
import pandas as pd
|
|
from sklearn.model_selection import train_test_split
|
|
import numpy as np
|
|
import sys
|
|
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
|
from tensorflow.keras.optimizers import Adam
|
|
from sacred.observers import FileStorageObserver, MongoObserver
|
|
from sacred import Experiment
|
|
from datetime import datetime
|
|
import os
|
|
import pymongo
|
|
|
|
ex = Experiment("434788-mongo", interactive=False, save_git_info=False)
|
|
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred'))
|
|
ex.observers.append(FileStorageObserver('my_runs'))
|
|
|
|
@ex.config
|
|
def my_config():
|
|
batch_param = int(sys.argv[1])
|
|
epoch_param = int(sys.argv[2])
|
|
|
|
@ex.capture
|
|
def prepare_model(epoch_param, batch_param, _run):
|
|
_run.info["prepare_model_ts"] = str(datetime.now())
|
|
|
|
wine=pd.read_csv('train.csv')
|
|
|
|
y = wine['quality']
|
|
x = wine.drop('quality', axis=1)
|
|
|
|
citricacid = x['fixed acidity'] * x['citric acid']
|
|
citric_acidity = pd.DataFrame(citricacid, columns=['citric_accidity'])
|
|
|
|
density_acidity = x['fixed acidity'] * x['density']
|
|
density_acidity = pd.DataFrame(density_acidity, columns=['density_acidity'])
|
|
|
|
|
|
x = wine.join(citric_acidity).join(density_acidity)
|
|
|
|
bins = (2, 5, 8)
|
|
gnames = ['bad', 'nice']
|
|
y = pd.cut(y, bins = bins, labels = gnames)
|
|
|
|
enc = LabelEncoder()
|
|
yenc = enc.fit_transform(y)
|
|
|
|
scale = StandardScaler()
|
|
scaled_x = scale.fit_transform(x)
|
|
|
|
NeuralModel = Sequential([
|
|
Dense(128, activation='relu', input_shape=(14,)),
|
|
Dense(32, activation='relu'),
|
|
Dense(64, activation='relu'),
|
|
Dense(64, activation='relu'),
|
|
Dense(64, activation='relu'),
|
|
Dense(1, activation='sigmoid')
|
|
])
|
|
|
|
rms = Adam(lr=0.0003)
|
|
|
|
NeuralModel.compile(optimizer=rms, loss='binary_crossentropy', metrics=['accuracy'])
|
|
|
|
NeuralModel.fit(scaled_x, yenc, batch_size= batch_param, epochs = epoch_param) #verbose = 1
|
|
|
|
NeuralModel.save('wine_model.h5')
|
|
|
|
#TO TYLKO NA POTRZEBY ZADANIA
|
|
y_pred = NeuralModel.predict(scaled_x)
|
|
|
|
y_pred = np.around(y_pred, decimals=0)
|
|
|
|
results = accuracy_score(yenc,y_pred)
|
|
|
|
_run.info["Accuracy dla zbioru TRAIN (bez sensu) (tylko na potrzeby zadania)"] = str(results)
|
|
|
|
|
|
|
|
|
|
@ex.main
|
|
def my_main(epoch_param, batch_param):
|
|
print(prepare_model())
|
|
|
|
|
|
r = ex.run()
|
|
ex.add_artifact("wine_model.h5") |