paranormal-or-skeptic-ISI-s.../main.py

39 lines
898 B
Python
Raw Normal View History

2021-05-08 19:02:05 +02:00
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.naive_bayes import MultinomialNB
2021-05-08 22:45:55 +02:00
from sklearn.pipeline import make_pipeline
2021-05-08 19:02:05 +02:00
from sklearn.feature_extraction.text import TfidfVectorizer
2021-05-08 22:45:55 +02:00
def Create_model(X_tsv, Y_tsv):
2021-05-08 19:02:05 +02:00
2021-05-08 22:45:55 +02:00
with open(X_tsv) as f:
X = f.readlines()
2021-05-08 19:02:05 +02:00
2021-05-08 22:45:55 +02:00
with open(Y_tsv) as f:
Y = f.readlines()
2021-05-08 19:02:05 +02:00
2021-05-08 22:45:55 +02:00
Y = LabelEncoder().fit_transform(Y)
pipeline = make_pipeline(TfidfVectorizer(),MultinomialNB())
2021-05-08 19:02:05 +02:00
2021-05-08 22:45:55 +02:00
return pipeline.fit(X, Y)
2021-05-08 19:02:05 +02:00
2021-05-08 22:45:55 +02:00
def predict(model, X_tsv, file_name):
with open(X_tsv) as f:
X = f.readlines()
prediction = model.predict(X)
np.savetxt(file_name, prediction, fmt='%d')
2021-05-08 19:02:05 +02:00
def main():
2021-05-08 22:45:55 +02:00
model = Create_model("train/in.tsv", "train/expected.tsv")
2021-05-08 19:02:05 +02:00
predict(model, "dev-0/in.tsv", "dev-0/out.tsv")
predict(model, "test-A/in.tsv", "test-A/out.tsv")
if __name__ == '__main__':
main()