126 lines
3.4 KiB
Python
126 lines
3.4 KiB
Python
from cmath import log10
|
|
import csv
|
|
import pandas as pd
|
|
import regex as re
|
|
import os
|
|
import kenlm
|
|
|
|
from nltk import word_tokenize
|
|
from collections import Counter, defaultdict
|
|
from english_words import english_words_set
|
|
|
|
# nltk.download("punkt")
|
|
|
|
# train set
|
|
train_data = pd.read_csv(
|
|
"train/in.tsv.xz",
|
|
sep="\t",
|
|
error_bad_lines=False,
|
|
warn_bad_lines=False,
|
|
header=None,
|
|
quoting=csv.QUOTE_NONE,
|
|
nrows=100_000
|
|
)
|
|
|
|
# training labels
|
|
train_labels = pd.read_csv(
|
|
"train/expected.tsv",
|
|
sep="\t",
|
|
error_bad_lines=False,
|
|
warn_bad_lines=False,
|
|
header=None,
|
|
quoting=csv.QUOTE_NONE,
|
|
nrows=100_000
|
|
)
|
|
|
|
# dev set
|
|
dev_data = pd.read_csv(
|
|
"dev-0/in.tsv.xz",
|
|
sep="\t",
|
|
error_bad_lines=False,
|
|
warn_bad_lines=False,
|
|
header=None,
|
|
quoting=csv.QUOTE_NONE,
|
|
)
|
|
|
|
# test set
|
|
test_data = pd.read_csv(
|
|
"test-A/in.tsv.xz",
|
|
sep="\t",
|
|
error_bad_lines=False,
|
|
warn_bad_lines=False,
|
|
header=None,
|
|
quoting=csv.QUOTE_NONE,
|
|
)
|
|
|
|
def prepare_text(text):
|
|
text = text.lower().replace("-\\n", "").replace("\\n", " ")
|
|
text = re.sub(r"\p{P}", "", text)
|
|
|
|
return text
|
|
|
|
def predict(word1, word2):
|
|
predictions = []
|
|
for word in english_words_set:
|
|
sentence = word1 + ' ' + word + ' ' + word2
|
|
text_score = model.score(sentence, bos=False, eos=False)
|
|
|
|
if len(predictions) < 12:
|
|
predictions.append((word, text_score))
|
|
else:
|
|
worst_score = None
|
|
for score in predictions:
|
|
if not worst_score:
|
|
worst_score = score
|
|
else:
|
|
if worst_score[1] > score[1]:
|
|
worst_score = score
|
|
if worst_score[1] < text_score:
|
|
predictions.remove(worst_score)
|
|
predictions.append((word, text_score))
|
|
probs = sorted(predictions, key=lambda tup: tup[1], reverse=True)
|
|
pred_str = ''
|
|
for word, prob in probs:
|
|
pred_str += f'{word}:{prob} '
|
|
pred_str += f':{log10(0.99)}'
|
|
return pred_str
|
|
|
|
def write_output():
|
|
with open("dev-0/out.tsv", "w") as file:
|
|
for _, row in dev_data.iterrows():
|
|
text = prepare_text(str(row[7]))
|
|
words = word_tokenize(text)
|
|
if len(words) < 3:
|
|
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
|
else:
|
|
prediction = predict(words[0], words[1])
|
|
file.write(prediction + "\n")
|
|
|
|
with open("test-A/out.tsv", "w") as file:
|
|
for _, row in test_data.iterrows():
|
|
text = prepare_text(str(row[7]))
|
|
words = word_tokenize(text)
|
|
if len(words) < 3:
|
|
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
|
else:
|
|
prediction = predict(words[0], words[1])
|
|
file.write(prediction + "\n")
|
|
|
|
if __name__ == "__main__":
|
|
print("Preparing data...")
|
|
train_data = train_data[[6, 7]]
|
|
train_data = pd.concat([train_data, train_labels], axis=1)
|
|
train_data["final"] = train_data[6] + train_data[0] + train_data[7]
|
|
train = train_data[['final']]
|
|
|
|
with open("./train_data.txt", 'a') as f:
|
|
for _, row in train_data.iterrows():
|
|
text = prepare_text(str(row["final"]))
|
|
f.write(text + '\n')
|
|
|
|
print("Preparing model...")
|
|
os.system('sh ./kenlm.sh')
|
|
model=kenlm.Model("kenlm_model.binary")
|
|
|
|
print("Writing outputs...")
|
|
write_output() |