1252 lines
780 KiB
Plaintext
1252 lines
780 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 95,
|
|||
|
"id": "blocked-battle",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# !pip install kaggle\n",
|
|||
|
"# !pip install pandas"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 96,
|
|||
|
"id": "civic-martin",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Downloading covid-world-vaccination-progress.zip to E:\\Na studia\\Magisterka\\Inżynieria uczenia maszynowego\\IUM_434804\n",
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
" 0%| | 0.00/160k [00:00<?, ?B/s]\n",
|
|||
|
"100%|##########| 160k/160k [00:00<00:00, 1.20MB/s]\n",
|
|||
|
"100%|##########| 160k/160k [00:00<00:00, 1.19MB/s]\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# !kaggle datasets download -d gpreda/covid-world-vaccination-progress"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 97,
|
|||
|
"id": "minus-belly",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import zipfile\n",
|
|||
|
"with zipfile.ZipFile('covid-world-vaccination-progress.zip', 'r') as zip_ref:\n",
|
|||
|
" zip_ref.extractall(\".\") "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 108,
|
|||
|
"id": "norman-british",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import numpy as np\n",
|
|||
|
"import pandas as pd\n",
|
|||
|
"df = pd.read_csv('country_vaccinations.csv')\n",
|
|||
|
"# podział danych na train/validate/test (6:2:2) za pomocą biblioteki numpy i pandas\n",
|
|||
|
"train, validate, test = np.split(df.sample(frac=1), [int(.6*len(df)), int(.8*len(df))])"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 99,
|
|||
|
"id": "twenty-wednesday",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Whole set size 110055\n",
|
|||
|
"Train set size: 66030\n",
|
|||
|
"Validate set size: 22005\n",
|
|||
|
"Test set size: 22020\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# Wypisanie ilości elementów w poszczególnych ramkach danych\n",
|
|||
|
"print(\"Whole set size\".ljust(20), df.size)\n",
|
|||
|
"print(\"Train set size: \".ljust(20), train.size)\n",
|
|||
|
"print(\"Validate set size: \".ljust(20), validate.size)\n",
|
|||
|
"print(\"Test set size: \".ljust(20), test.size)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 100,
|
|||
|
"id": "sustained-active",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>country</th>\n",
|
|||
|
" <th>iso_code</th>\n",
|
|||
|
" <th>date</th>\n",
|
|||
|
" <th>total_vaccinations</th>\n",
|
|||
|
" <th>people_vaccinated</th>\n",
|
|||
|
" <th>people_fully_vaccinated</th>\n",
|
|||
|
" <th>daily_vaccinations_raw</th>\n",
|
|||
|
" <th>daily_vaccinations</th>\n",
|
|||
|
" <th>total_vaccinations_per_hundred</th>\n",
|
|||
|
" <th>people_vaccinated_per_hundred</th>\n",
|
|||
|
" <th>people_fully_vaccinated_per_hundred</th>\n",
|
|||
|
" <th>daily_vaccinations_per_million</th>\n",
|
|||
|
" <th>vaccines</th>\n",
|
|||
|
" <th>source_name</th>\n",
|
|||
|
" <th>source_website</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>count</th>\n",
|
|||
|
" <td>7337</td>\n",
|
|||
|
" <td>7337</td>\n",
|
|||
|
" <td>7337</td>\n",
|
|||
|
" <td>4.552000e+03</td>\n",
|
|||
|
" <td>4.053000e+03</td>\n",
|
|||
|
" <td>2.749000e+03</td>\n",
|
|||
|
" <td>3.830000e+03</td>\n",
|
|||
|
" <td>7.150000e+03</td>\n",
|
|||
|
" <td>4552.000000</td>\n",
|
|||
|
" <td>4053.000000</td>\n",
|
|||
|
" <td>2749.000000</td>\n",
|
|||
|
" <td>7150.000000</td>\n",
|
|||
|
" <td>7337</td>\n",
|
|||
|
" <td>7337</td>\n",
|
|||
|
" <td>7337</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>unique</th>\n",
|
|||
|
" <td>150</td>\n",
|
|||
|
" <td>150</td>\n",
|
|||
|
" <td>97</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>25</td>\n",
|
|||
|
" <td>91</td>\n",
|
|||
|
" <td>145</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>top</th>\n",
|
|||
|
" <td>Canada</td>\n",
|
|||
|
" <td>GBR</td>\n",
|
|||
|
" <td>2021-03-09</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>Moderna, Oxford/AstraZeneca, Pfizer/BioNTech</td>\n",
|
|||
|
" <td>Ministry of Health</td>\n",
|
|||
|
" <td>https://coronavirus.data.gov.uk/details/health...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>freq</th>\n",
|
|||
|
" <td>96</td>\n",
|
|||
|
" <td>96</td>\n",
|
|||
|
" <td>129</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>1798</td>\n",
|
|||
|
" <td>2329</td>\n",
|
|||
|
" <td>480</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>mean</th>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>2.361121e+06</td>\n",
|
|||
|
" <td>1.918598e+06</td>\n",
|
|||
|
" <td>7.999520e+05</td>\n",
|
|||
|
" <td>8.744129e+04</td>\n",
|
|||
|
" <td>5.825144e+04</td>\n",
|
|||
|
" <td>9.398541</td>\n",
|
|||
|
" <td>7.237774</td>\n",
|
|||
|
" <td>3.361342</td>\n",
|
|||
|
" <td>2675.625594</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>std</th>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>8.421579e+06</td>\n",
|
|||
|
" <td>6.249484e+06</td>\n",
|
|||
|
" <td>3.230805e+06</td>\n",
|
|||
|
" <td>2.693155e+05</td>\n",
|
|||
|
" <td>1.992295e+05</td>\n",
|
|||
|
" <td>16.995766</td>\n",
|
|||
|
" <td>11.614673</td>\n",
|
|||
|
" <td>7.262965</td>\n",
|
|||
|
" <td>4229.243670</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>min</th>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.000000e+00</td>\n",
|
|||
|
" <td>0.000000e+00</td>\n",
|
|||
|
" <td>1.000000e+00</td>\n",
|
|||
|
" <td>0.000000e+00</td>\n",
|
|||
|
" <td>1.000000e+00</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>25%</th>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>3.741475e+04</td>\n",
|
|||
|
" <td>3.457400e+04</td>\n",
|
|||
|
" <td>1.799500e+04</td>\n",
|
|||
|
" <td>2.732000e+03</td>\n",
|
|||
|
" <td>9.882500e+02</td>\n",
|
|||
|
" <td>0.717500</td>\n",
|
|||
|
" <td>0.720000</td>\n",
|
|||
|
" <td>0.370000</td>\n",
|
|||
|
" <td>355.000000</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>50%</th>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>2.536690e+05</td>\n",
|
|||
|
" <td>2.334230e+05</td>\n",
|
|||
|
" <td>9.966600e+04</td>\n",
|
|||
|
" <td>1.365700e+04</td>\n",
|
|||
|
" <td>5.952500e+03</td>\n",
|
|||
|
" <td>3.465000</td>\n",
|
|||
|
" <td>3.050000</td>\n",
|
|||
|
" <td>1.360000</td>\n",
|
|||
|
" <td>1247.000000</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>75%</th>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>1.195748e+06</td>\n",
|
|||
|
" <td>9.467810e+05</td>\n",
|
|||
|
" <td>4.625030e+05</td>\n",
|
|||
|
" <td>5.718200e+04</td>\n",
|
|||
|
" <td>2.680500e+04</td>\n",
|
|||
|
" <td>10.080000</td>\n",
|
|||
|
" <td>7.890000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" <td>3026.750000</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>max</th>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>1.183138e+08</td>\n",
|
|||
|
" <td>7.723006e+07</td>\n",
|
|||
|
" <td>4.193463e+07</td>\n",
|
|||
|
" <td>4.575496e+06</td>\n",
|
|||
|
" <td>2.541597e+06</td>\n",
|
|||
|
" <td>151.860000</td>\n",
|
|||
|
" <td>88.790000</td>\n",
|
|||
|
" <td>63.070000</td>\n",
|
|||
|
" <td>54264.000000</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" country iso_code date total_vaccinations people_vaccinated \\\n",
|
|||
|
"count 7337 7337 7337 4.552000e+03 4.053000e+03 \n",
|
|||
|
"unique 150 150 97 NaN NaN \n",
|
|||
|
"top Canada GBR 2021-03-09 NaN NaN \n",
|
|||
|
"freq 96 96 129 NaN NaN \n",
|
|||
|
"mean NaN NaN NaN 2.361121e+06 1.918598e+06 \n",
|
|||
|
"std NaN NaN NaN 8.421579e+06 6.249484e+06 \n",
|
|||
|
"min NaN NaN NaN 0.000000e+00 0.000000e+00 \n",
|
|||
|
"25% NaN NaN NaN 3.741475e+04 3.457400e+04 \n",
|
|||
|
"50% NaN NaN NaN 2.536690e+05 2.334230e+05 \n",
|
|||
|
"75% NaN NaN NaN 1.195748e+06 9.467810e+05 \n",
|
|||
|
"max NaN NaN NaN 1.183138e+08 7.723006e+07 \n",
|
|||
|
"\n",
|
|||
|
" people_fully_vaccinated daily_vaccinations_raw daily_vaccinations \\\n",
|
|||
|
"count 2.749000e+03 3.830000e+03 7.150000e+03 \n",
|
|||
|
"unique NaN NaN NaN \n",
|
|||
|
"top NaN NaN NaN \n",
|
|||
|
"freq NaN NaN NaN \n",
|
|||
|
"mean 7.999520e+05 8.744129e+04 5.825144e+04 \n",
|
|||
|
"std 3.230805e+06 2.693155e+05 1.992295e+05 \n",
|
|||
|
"min 1.000000e+00 0.000000e+00 1.000000e+00 \n",
|
|||
|
"25% 1.799500e+04 2.732000e+03 9.882500e+02 \n",
|
|||
|
"50% 9.966600e+04 1.365700e+04 5.952500e+03 \n",
|
|||
|
"75% 4.625030e+05 5.718200e+04 2.680500e+04 \n",
|
|||
|
"max 4.193463e+07 4.575496e+06 2.541597e+06 \n",
|
|||
|
"\n",
|
|||
|
" total_vaccinations_per_hundred people_vaccinated_per_hundred \\\n",
|
|||
|
"count 4552.000000 4053.000000 \n",
|
|||
|
"unique NaN NaN \n",
|
|||
|
"top NaN NaN \n",
|
|||
|
"freq NaN NaN \n",
|
|||
|
"mean 9.398541 7.237774 \n",
|
|||
|
"std 16.995766 11.614673 \n",
|
|||
|
"min 0.000000 0.000000 \n",
|
|||
|
"25% 0.717500 0.720000 \n",
|
|||
|
"50% 3.465000 3.050000 \n",
|
|||
|
"75% 10.080000 7.890000 \n",
|
|||
|
"max 151.860000 88.790000 \n",
|
|||
|
"\n",
|
|||
|
" people_fully_vaccinated_per_hundred daily_vaccinations_per_million \\\n",
|
|||
|
"count 2749.000000 7150.000000 \n",
|
|||
|
"unique NaN NaN \n",
|
|||
|
"top NaN NaN \n",
|
|||
|
"freq NaN NaN \n",
|
|||
|
"mean 3.361342 2675.625594 \n",
|
|||
|
"std 7.262965 4229.243670 \n",
|
|||
|
"min 0.000000 0.000000 \n",
|
|||
|
"25% 0.370000 355.000000 \n",
|
|||
|
"50% 1.360000 1247.000000 \n",
|
|||
|
"75% 3.000000 3026.750000 \n",
|
|||
|
"max 63.070000 54264.000000 \n",
|
|||
|
"\n",
|
|||
|
" vaccines source_name \\\n",
|
|||
|
"count 7337 7337 \n",
|
|||
|
"unique 25 91 \n",
|
|||
|
"top Moderna, Oxford/AstraZeneca, Pfizer/BioNTech Ministry of Health \n",
|
|||
|
"freq 1798 2329 \n",
|
|||
|
"mean NaN NaN \n",
|
|||
|
"std NaN NaN \n",
|
|||
|
"min NaN NaN \n",
|
|||
|
"25% NaN NaN \n",
|
|||
|
"50% NaN NaN \n",
|
|||
|
"75% NaN NaN \n",
|
|||
|
"max NaN NaN \n",
|
|||
|
"\n",
|
|||
|
" source_website \n",
|
|||
|
"count 7337 \n",
|
|||
|
"unique 145 \n",
|
|||
|
"top https://coronavirus.data.gov.uk/details/health... \n",
|
|||
|
"freq 480 \n",
|
|||
|
"mean NaN \n",
|
|||
|
"std NaN \n",
|
|||
|
"min NaN \n",
|
|||
|
"25% NaN \n",
|
|||
|
"50% NaN \n",
|
|||
|
"75% NaN \n",
|
|||
|
"max NaN "
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 100,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.describe(include='all')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 101,
|
|||
|
"id": "occupational-armor",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
" country\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" iso_code\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" date\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" total_vaccinations\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" people_vaccinated\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" people_fully_vaccinated\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" daily_vaccinations_raw\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" daily_vaccinations\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" total_vaccinations_per_hundred\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" people_vaccinated_per_hundred\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" people_fully_vaccinated_per_hundred\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" daily_vaccinations_per_million\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" vaccines\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" source_name\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n",
|
|||
|
"\n",
|
|||
|
" source_website\n",
|
|||
|
"AxesSubplot(0.125,0.125;0.775x0.755)\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABrgAAAhyCAYAAAA7Gp8xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd7w0V10/8M9JoYaQAKGXAKKISDM0QQERAekdLESk+qNJk2AhSq9KkWKAUKT3TqiB0EIKT0gIEIiAFBFQqqCgcH5/nNk8c+fO7N29z5My4f1+vfZ1786emZ3dnTlz5nznfKfUWgMAAAAAAABzsceZvQIAAAAAAACwDgEuAAAAAAAAZkWACwAAAAAAgFkR4AIAAAAAAGBWBLgAAAAAAACYFQEuAAAAAAAAZmWvM3sFlrnQhS5UDzzwwDN7NQAAAAAAADiDHX/88f9Raz1g7LWzdIDrwAMPzHHHHXdmrwYAAAAAAABnsFLKv069JkUhAAAAAAAAsyLABQAAAAAAwKwIcAEAAAAAADArAlwAAAAAAADMigAXAAAAAAAAsyLABQAAAAAAwKwIcAEAAAAAADArAlwAAAAAAADMigAXAAAAAAAAsyLABQAAAAAAwKwIcAEAAAAAADArAlwAAAAAAADMigAXAAAAAAAAsyLABQAAAAAAwKwIcAEAAAAAADArAlwAAAAAAADMigAXAAAAAAAAsyLABQAAAAAAwKwIcAEAAAAAADArAlwAAAAAAADMigAXAAAAAAAAsyLABQAAAAAAwKwIcAEAAAAAADAre53ZK7CqAw95x+j0Lz/pFmfwmgAAAAAAAHBmMoILAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWdkywFVKuVQp5chSymdKKSeXUh7cTb9AKeW9pZQvdH/376aXUsqzSimnllJOLKVco7esg7vyXyilHHz6fSwAAAAAAADOrlYZwfV/SR5Wa71SkuskuX8p5UpJDkny/lrrFZK8v3ueJDdPcoXucZ8kz0taQCzJoUmuneRaSQ5dBMUAAAAAAABgVVsGuGqt36i1frL7/4dJPpvkEkluk+SlXbGXJrlt9/9tkrysNkcn2a+UcrEkN03y3lrrd2qt303y3iQ3250fBgAAAAAAgLO/te7BVUo5MMnVk3wiyUVqrd/oXvr3JBfp/r9Ekq/2ZvtaN21qOgAAAAAAAKxs5QBXKWWfJG9I8ue11h/0X6u11iR1d6xQKeU+pZTjSinHffvb394diwQAAAAAAOBsZKUAVyll77Tg1itqrW/sJn+zSz2Y7u+3uulfT3Kp3uyX7KZNTd+g1npYrfWgWutBBxxwwDqfBQAAAAAAgF8AWwa4SiklyYuSfLbW+ve9l96a5ODu/4OTvKU3/e6luU6S73epDN+d5PdKKfuXUvZP8nvdNAAAAAAAAFjZXiuUuV6SP05yUinlhG7aXyZ5UpLXllLumeRfk9y5e+2dSX4/yalJfpzkHklSa/1OKeWxSY7tyj2m1vqd3fEhAAAAAAAA+MWxZYCr1vqRJGXi5RuPlK9J7j+xrMOTHL7OCgIAAAAAAEDfSvfgAgAAAAAAgLMKAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmRYALAAAAAACAWRHgAgAAAAAAYFYEuAAAAAAAAJgVAS4AAAAAAABmZcsAVynl8FLKt0opn+5N+9tSytdLKSd0j9/vvfaoUsqppZRTSik37U2/WTft1FLKIbv/owAAAAAAAPCLYJURXC9JcrOR6f9Qa71a93hnkpRSrpTkrkl+rZvnuaWUPUspeyZ5TpKbJ7lSkrt1ZQEAAAAAAGAte21VoNZ6VCnlwBWXd5skr661/iTJl0oppya5VvfaqbXWLyZJKeXVXdnPrL/KAAAAAAAA/CLblXtwPaCUcmKXwnD/btolkny1V+Zr3bSp6QAAAAAAALCW7Qa4npfk8kmuluQbSZ6+u1aolHKfUspxpZTjvv3tb++uxQI
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 2160x720 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"for col in df.columns:\n",
|
|||
|
" column = df[col].value_counts().plot(kind=\"bar\",figsize=(30,10))\n",
|
|||
|
" print(\"\\n\", col)\n",
|
|||
|
" print(column)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 105,
|
|||
|
"id": "occupational-option",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# !pip install sklearn"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 111,
|
|||
|
"id": "hispanic-script",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>country</th>\n",
|
|||
|
" <th>iso_code</th>\n",
|
|||
|
" <th>date</th>\n",
|
|||
|
" <th>total_vaccinations</th>\n",
|
|||
|
" <th>people_vaccinated</th>\n",
|
|||
|
" <th>people_fully_vaccinated</th>\n",
|
|||
|
" <th>daily_vaccinations_raw</th>\n",
|
|||
|
" <th>daily_vaccinations</th>\n",
|
|||
|
" <th>total_vaccinations_per_hundred</th>\n",
|
|||
|
" <th>people_vaccinated_per_hundred</th>\n",
|
|||
|
" <th>people_fully_vaccinated_per_hundred</th>\n",
|
|||
|
" <th>daily_vaccinations_per_million</th>\n",
|
|||
|
" <th>vaccines</th>\n",
|
|||
|
" <th>source_name</th>\n",
|
|||
|
" <th>source_website</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>Afghanistan</td>\n",
|
|||
|
" <td>AFG</td>\n",
|
|||
|
" <td>2021-02-22</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca</td>\n",
|
|||
|
" <td>Government of Afghanistan</td>\n",
|
|||
|
" <td>http://www.xinhuanet.com/english/asiapacific/2...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>Afghanistan</td>\n",
|
|||
|
" <td>AFG</td>\n",
|
|||
|
" <td>2021-02-23</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.000537</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.000645</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca</td>\n",
|
|||
|
" <td>Government of Afghanistan</td>\n",
|
|||
|
" <td>http://www.xinhuanet.com/english/asiapacific/2...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>Afghanistan</td>\n",
|
|||
|
" <td>AFG</td>\n",
|
|||
|
" <td>2021-02-24</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.000537</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.000645</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca</td>\n",
|
|||
|
" <td>Government of Afghanistan</td>\n",
|
|||
|
" <td>http://www.xinhuanet.com/english/asiapacific/2...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>Afghanistan</td>\n",
|
|||
|
" <td>AFG</td>\n",
|
|||
|
" <td>2021-02-25</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.000537</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.000645</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca</td>\n",
|
|||
|
" <td>Government of Afghanistan</td>\n",
|
|||
|
" <td>http://www.xinhuanet.com/english/asiapacific/2...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>Afghanistan</td>\n",
|
|||
|
" <td>AFG</td>\n",
|
|||
|
" <td>2021-02-26</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.000537</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>0.000645</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca</td>\n",
|
|||
|
" <td>Government of Afghanistan</td>\n",
|
|||
|
" <td>http://www.xinhuanet.com/english/asiapacific/2...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>7332</th>\n",
|
|||
|
" <td>Zimbabwe</td>\n",
|
|||
|
" <td>ZWE</td>\n",
|
|||
|
" <td>2021-03-15</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>Sinopharm/Beijing</td>\n",
|
|||
|
" <td>Ministry of Health</td>\n",
|
|||
|
" <td>https://twitter.com/MoHCCZim/status/1373023610...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>7333</th>\n",
|
|||
|
" <td>Zimbabwe</td>\n",
|
|||
|
" <td>ZWE</td>\n",
|
|||
|
" <td>2021-03-16</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>Sinopharm/Beijing</td>\n",
|
|||
|
" <td>Ministry of Health</td>\n",
|
|||
|
" <td>https://twitter.com/MoHCCZim/status/1373023610...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>7334</th>\n",
|
|||
|
" <td>Zimbabwe</td>\n",
|
|||
|
" <td>ZWE</td>\n",
|
|||
|
" <td>2021-03-17</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>Sinopharm/Beijing</td>\n",
|
|||
|
" <td>Ministry of Health</td>\n",
|
|||
|
" <td>https://twitter.com/MoHCCZim/status/1373023610...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>7335</th>\n",
|
|||
|
" <td>Zimbabwe</td>\n",
|
|||
|
" <td>ZWE</td>\n",
|
|||
|
" <td>2021-03-18</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>Sinopharm/Beijing</td>\n",
|
|||
|
" <td>Ministry of Health</td>\n",
|
|||
|
" <td>https://twitter.com/MoHCCZim/status/1373023610...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>7336</th>\n",
|
|||
|
" <td>Zimbabwe</td>\n",
|
|||
|
" <td>ZWE</td>\n",
|
|||
|
" <td>2021-03-19</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>NaN</td>\n",
|
|||
|
" <td>Sinopharm/Beijing</td>\n",
|
|||
|
" <td>Ministry of Health</td>\n",
|
|||
|
" <td>https://twitter.com/MoHCCZim/status/1373023610...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>7337 rows × 15 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" country iso_code date total_vaccinations people_vaccinated \\\n",
|
|||
|
"0 Afghanistan AFG 2021-02-22 0.0 0.0 \n",
|
|||
|
"1 Afghanistan AFG 2021-02-23 NaN NaN \n",
|
|||
|
"2 Afghanistan AFG 2021-02-24 NaN NaN \n",
|
|||
|
"3 Afghanistan AFG 2021-02-25 NaN NaN \n",
|
|||
|
"4 Afghanistan AFG 2021-02-26 NaN NaN \n",
|
|||
|
"... ... ... ... ... ... \n",
|
|||
|
"7332 Zimbabwe ZWE 2021-03-15 NaN NaN \n",
|
|||
|
"7333 Zimbabwe ZWE 2021-03-16 NaN NaN \n",
|
|||
|
"7334 Zimbabwe ZWE 2021-03-17 NaN NaN \n",
|
|||
|
"7335 Zimbabwe ZWE 2021-03-18 NaN NaN \n",
|
|||
|
"7336 Zimbabwe ZWE 2021-03-19 NaN NaN \n",
|
|||
|
"\n",
|
|||
|
" people_fully_vaccinated daily_vaccinations_raw daily_vaccinations \\\n",
|
|||
|
"0 NaN NaN NaN \n",
|
|||
|
"1 NaN NaN 0.000537 \n",
|
|||
|
"2 NaN NaN 0.000537 \n",
|
|||
|
"3 NaN NaN 0.000537 \n",
|
|||
|
"4 NaN NaN 0.000537 \n",
|
|||
|
"... ... ... ... \n",
|
|||
|
"7332 NaN NaN NaN \n",
|
|||
|
"7333 NaN NaN NaN \n",
|
|||
|
"7334 NaN NaN NaN \n",
|
|||
|
"7335 NaN NaN NaN \n",
|
|||
|
"7336 NaN NaN NaN \n",
|
|||
|
"\n",
|
|||
|
" total_vaccinations_per_hundred people_vaccinated_per_hundred \\\n",
|
|||
|
"0 0.0 0.0 \n",
|
|||
|
"1 NaN NaN \n",
|
|||
|
"2 NaN NaN \n",
|
|||
|
"3 NaN NaN \n",
|
|||
|
"4 NaN NaN \n",
|
|||
|
"... ... ... \n",
|
|||
|
"7332 NaN NaN \n",
|
|||
|
"7333 NaN NaN \n",
|
|||
|
"7334 NaN NaN \n",
|
|||
|
"7335 NaN NaN \n",
|
|||
|
"7336 NaN NaN \n",
|
|||
|
"\n",
|
|||
|
" people_fully_vaccinated_per_hundred daily_vaccinations_per_million \\\n",
|
|||
|
"0 NaN NaN \n",
|
|||
|
"1 NaN 0.000645 \n",
|
|||
|
"2 NaN 0.000645 \n",
|
|||
|
"3 NaN 0.000645 \n",
|
|||
|
"4 NaN 0.000645 \n",
|
|||
|
"... ... ... \n",
|
|||
|
"7332 NaN NaN \n",
|
|||
|
"7333 NaN NaN \n",
|
|||
|
"7334 NaN NaN \n",
|
|||
|
"7335 NaN NaN \n",
|
|||
|
"7336 NaN NaN \n",
|
|||
|
"\n",
|
|||
|
" vaccines source_name \\\n",
|
|||
|
"0 Oxford/AstraZeneca Government of Afghanistan \n",
|
|||
|
"1 Oxford/AstraZeneca Government of Afghanistan \n",
|
|||
|
"2 Oxford/AstraZeneca Government of Afghanistan \n",
|
|||
|
"3 Oxford/AstraZeneca Government of Afghanistan \n",
|
|||
|
"4 Oxford/AstraZeneca Government of Afghanistan \n",
|
|||
|
"... ... ... \n",
|
|||
|
"7332 Sinopharm/Beijing Ministry of Health \n",
|
|||
|
"7333 Sinopharm/Beijing Ministry of Health \n",
|
|||
|
"7334 Sinopharm/Beijing Ministry of Health \n",
|
|||
|
"7335 Sinopharm/Beijing Ministry of Health \n",
|
|||
|
"7336 Sinopharm/Beijing Ministry of Health \n",
|
|||
|
"\n",
|
|||
|
" source_website \n",
|
|||
|
"0 http://www.xinhuanet.com/english/asiapacific/2... \n",
|
|||
|
"1 http://www.xinhuanet.com/english/asiapacific/2... \n",
|
|||
|
"2 http://www.xinhuanet.com/english/asiapacific/2... \n",
|
|||
|
"3 http://www.xinhuanet.com/english/asiapacific/2... \n",
|
|||
|
"4 http://www.xinhuanet.com/english/asiapacific/2... \n",
|
|||
|
"... ... \n",
|
|||
|
"7332 https://twitter.com/MoHCCZim/status/1373023610... \n",
|
|||
|
"7333 https://twitter.com/MoHCCZim/status/1373023610... \n",
|
|||
|
"7334 https://twitter.com/MoHCCZim/status/1373023610... \n",
|
|||
|
"7335 https://twitter.com/MoHCCZim/status/1373023610... \n",
|
|||
|
"7336 https://twitter.com/MoHCCZim/status/1373023610... \n",
|
|||
|
"\n",
|
|||
|
"[7337 rows x 15 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 111,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from sklearn import preprocessing\n",
|
|||
|
"# normalizacja wartości numerycznych\n",
|
|||
|
"numeric_values = df.select_dtypes(include='float64').values # tylko wartości numeryczne\n",
|
|||
|
"min_max_scaler = preprocessing.MinMaxScaler()\n",
|
|||
|
"x_scaled = min_max_scaler.fit_transform(values)\n",
|
|||
|
"numeric_columns = df.select_dtypes(include='float64').columns\n",
|
|||
|
"df_normalized = pd.DataFrame(x_scaled, columns=numeric_columns)\n",
|
|||
|
"for col in df.columns: # usunięcie nieznormalizowanych danych i wstawienie nowych już znormalizowanych do oryginalnej ramki danych\n",
|
|||
|
" if col in numeric_columns: df[col] = df_normalized[col]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 112,
|
|||
|
"id": "creative-deficit",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>country</th>\n",
|
|||
|
" <th>iso_code</th>\n",
|
|||
|
" <th>date</th>\n",
|
|||
|
" <th>total_vaccinations</th>\n",
|
|||
|
" <th>people_vaccinated</th>\n",
|
|||
|
" <th>people_fully_vaccinated</th>\n",
|
|||
|
" <th>daily_vaccinations_raw</th>\n",
|
|||
|
" <th>daily_vaccinations</th>\n",
|
|||
|
" <th>total_vaccinations_per_hundred</th>\n",
|
|||
|
" <th>people_vaccinated_per_hundred</th>\n",
|
|||
|
" <th>people_fully_vaccinated_per_hundred</th>\n",
|
|||
|
" <th>daily_vaccinations_per_million</th>\n",
|
|||
|
" <th>vaccines</th>\n",
|
|||
|
" <th>source_name</th>\n",
|
|||
|
" <th>source_website</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>46</th>\n",
|
|||
|
" <td>Albania</td>\n",
|
|||
|
" <td>ALB</td>\n",
|
|||
|
" <td>2021-02-02</td>\n",
|
|||
|
" <td>0.000027</td>\n",
|
|||
|
" <td>0.000033</td>\n",
|
|||
|
" <td>0.000015</td>\n",
|
|||
|
" <td>0.000295</td>\n",
|
|||
|
" <td>0.000100</td>\n",
|
|||
|
" <td>0.000751</td>\n",
|
|||
|
" <td>0.000906</td>\n",
|
|||
|
" <td>0.000344</td>\n",
|
|||
|
" <td>0.001622</td>\n",
|
|||
|
" <td>Pfizer/BioNTech</td>\n",
|
|||
|
" <td>Ministry of Health</td>\n",
|
|||
|
" <td>https://shendetesia.gov.al/covid19-ministria-e...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>234</th>\n",
|
|||
|
" <td>Antigua and Barbuda</td>\n",
|
|||
|
" <td>ATG</td>\n",
|
|||
|
" <td>2021-03-13</td>\n",
|
|||
|
" <td>0.002351</td>\n",
|
|||
|
" <td>0.003385</td>\n",
|
|||
|
" <td>0.000409</td>\n",
|
|||
|
" <td>0.003888</td>\n",
|
|||
|
" <td>0.004605</td>\n",
|
|||
|
" <td>0.004030</td>\n",
|
|||
|
" <td>0.006229</td>\n",
|
|||
|
" <td>0.000688</td>\n",
|
|||
|
" <td>0.004773</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca</td>\n",
|
|||
|
" <td>Ministry of Health</td>\n",
|
|||
|
" <td>https://www.facebook.com/investingforwellness/...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>235</th>\n",
|
|||
|
" <td>Antigua and Barbuda</td>\n",
|
|||
|
" <td>ATG</td>\n",
|
|||
|
" <td>2021-03-14</td>\n",
|
|||
|
" <td>0.002474</td>\n",
|
|||
|
" <td>0.003454</td>\n",
|
|||
|
" <td>0.000629</td>\n",
|
|||
|
" <td>0.003033</td>\n",
|
|||
|
" <td>0.004431</td>\n",
|
|||
|
" <td>0.004235</td>\n",
|
|||
|
" <td>0.006342</td>\n",
|
|||
|
" <td>0.001033</td>\n",
|
|||
|
" <td>0.004589</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca</td>\n",
|
|||
|
" <td>Ministry of Health</td>\n",
|
|||
|
" <td>https://www.facebook.com/investingforwellness/...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>236</th>\n",
|
|||
|
" <td>Antigua and Barbuda</td>\n",
|
|||
|
" <td>ATG</td>\n",
|
|||
|
" <td>2021-03-15</td>\n",
|
|||
|
" <td>0.002548</td>\n",
|
|||
|
" <td>0.003514</td>\n",
|
|||
|
" <td>0.000730</td>\n",
|
|||
|
" <td>0.001849</td>\n",
|
|||
|
" <td>0.004376</td>\n",
|
|||
|
" <td>0.004371</td>\n",
|
|||
|
" <td>0.006455</td>\n",
|
|||
|
" <td>0.001033</td>\n",
|
|||
|
" <td>0.004533</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca</td>\n",
|
|||
|
" <td>Ministry of Health</td>\n",
|
|||
|
" <td>https://www.facebook.com/investingforwellness/...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>237</th>\n",
|
|||
|
" <td>Argentina</td>\n",
|
|||
|
" <td>ARG</td>\n",
|
|||
|
" <td>2020-12-29</td>\n",
|
|||
|
" <td>0.002583</td>\n",
|
|||
|
" <td>0.003530</td>\n",
|
|||
|
" <td>0.000800</td>\n",
|
|||
|
" <td>0.000865</td>\n",
|
|||
|
" <td>0.004069</td>\n",
|
|||
|
" <td>0.004440</td>\n",
|
|||
|
" <td>0.006569</td>\n",
|
|||
|
" <td>0.001205</td>\n",
|
|||
|
" <td>0.004220</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca, Sinopharm/Beijing, Sputnik V</td>\n",
|
|||
|
" <td>Ministry of Health</td>\n",
|
|||
|
" <td>http://datos.salud.gob.ar/dataset/vacunas-cont...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>6965</th>\n",
|
|||
|
" <td>United Arab Emirates</td>\n",
|
|||
|
" <td>ARE</td>\n",
|
|||
|
" <td>2021-03-10</td>\n",
|
|||
|
" <td>0.011805</td>\n",
|
|||
|
" <td>0.014719</td>\n",
|
|||
|
" <td>0.006252</td>\n",
|
|||
|
" <td>0.008788</td>\n",
|
|||
|
" <td>0.010273</td>\n",
|
|||
|
" <td>0.289051</td>\n",
|
|||
|
" <td>0.389468</td>\n",
|
|||
|
" <td>0.136465</td>\n",
|
|||
|
" <td>0.152606</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm...</td>\n",
|
|||
|
" <td>National Emergency Crisis and Disaster Managem...</td>\n",
|
|||
|
" <td>http://covid19.ncema.gov.ae/en</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>6966</th>\n",
|
|||
|
" <td>United Arab Emirates</td>\n",
|
|||
|
" <td>ARE</td>\n",
|
|||
|
" <td>2021-03-11</td>\n",
|
|||
|
" <td>0.012128</td>\n",
|
|||
|
" <td>0.015115</td>\n",
|
|||
|
" <td>0.006437</td>\n",
|
|||
|
" <td>0.007986</td>\n",
|
|||
|
" <td>0.011229</td>\n",
|
|||
|
" <td>0.296974</td>\n",
|
|||
|
" <td>0.400000</td>\n",
|
|||
|
" <td>0.140423</td>\n",
|
|||
|
" <td>0.166814</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm...</td>\n",
|
|||
|
" <td>National Emergency Crisis and Disaster Managem...</td>\n",
|
|||
|
" <td>http://covid19.ncema.gov.ae/en</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>6967</th>\n",
|
|||
|
" <td>United Arab Emirates</td>\n",
|
|||
|
" <td>ARE</td>\n",
|
|||
|
" <td>2021-03-12</td>\n",
|
|||
|
" <td>0.012272</td>\n",
|
|||
|
" <td>0.015243</td>\n",
|
|||
|
" <td>0.006608</td>\n",
|
|||
|
" <td>0.003560</td>\n",
|
|||
|
" <td>0.011531</td>\n",
|
|||
|
" <td>0.300526</td>\n",
|
|||
|
" <td>0.403398</td>\n",
|
|||
|
" <td>0.144209</td>\n",
|
|||
|
" <td>0.171292</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm...</td>\n",
|
|||
|
" <td>National Emergency Crisis and Disaster Managem...</td>\n",
|
|||
|
" <td>http://covid19.ncema.gov.ae/en</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>6968</th>\n",
|
|||
|
" <td>United Arab Emirates</td>\n",
|
|||
|
" <td>ARE</td>\n",
|
|||
|
" <td>2021-03-13</td>\n",
|
|||
|
" <td>0.012499</td>\n",
|
|||
|
" <td>0.015473</td>\n",
|
|||
|
" <td>0.006826</td>\n",
|
|||
|
" <td>0.005609</td>\n",
|
|||
|
" <td>0.011996</td>\n",
|
|||
|
" <td>0.306058</td>\n",
|
|||
|
" <td>0.409400</td>\n",
|
|||
|
" <td>0.149028</td>\n",
|
|||
|
" <td>0.178221</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm...</td>\n",
|
|||
|
" <td>National Emergency Crisis and Disaster Managem...</td>\n",
|
|||
|
" <td>http://covid19.ncema.gov.ae/en</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>6969</th>\n",
|
|||
|
" <td>United Arab Emirates</td>\n",
|
|||
|
" <td>ARE</td>\n",
|
|||
|
" <td>2021-03-14</td>\n",
|
|||
|
" <td>0.012796</td>\n",
|
|||
|
" <td>0.015709</td>\n",
|
|||
|
" <td>0.007232</td>\n",
|
|||
|
" <td>0.007341</td>\n",
|
|||
|
" <td>0.012412</td>\n",
|
|||
|
" <td>0.313367</td>\n",
|
|||
|
" <td>0.415629</td>\n",
|
|||
|
" <td>0.157804</td>\n",
|
|||
|
" <td>0.184395</td>\n",
|
|||
|
" <td>Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm...</td>\n",
|
|||
|
" <td>National Emergency Crisis and Disaster Managem...</td>\n",
|
|||
|
" <td>http://covid19.ncema.gov.ae/en</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>2367 rows × 15 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" country iso_code date total_vaccinations \\\n",
|
|||
|
"46 Albania ALB 2021-02-02 0.000027 \n",
|
|||
|
"234 Antigua and Barbuda ATG 2021-03-13 0.002351 \n",
|
|||
|
"235 Antigua and Barbuda ATG 2021-03-14 0.002474 \n",
|
|||
|
"236 Antigua and Barbuda ATG 2021-03-15 0.002548 \n",
|
|||
|
"237 Argentina ARG 2020-12-29 0.002583 \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"6965 United Arab Emirates ARE 2021-03-10 0.011805 \n",
|
|||
|
"6966 United Arab Emirates ARE 2021-03-11 0.012128 \n",
|
|||
|
"6967 United Arab Emirates ARE 2021-03-12 0.012272 \n",
|
|||
|
"6968 United Arab Emirates ARE 2021-03-13 0.012499 \n",
|
|||
|
"6969 United Arab Emirates ARE 2021-03-14 0.012796 \n",
|
|||
|
"\n",
|
|||
|
" people_vaccinated people_fully_vaccinated daily_vaccinations_raw \\\n",
|
|||
|
"46 0.000033 0.000015 0.000295 \n",
|
|||
|
"234 0.003385 0.000409 0.003888 \n",
|
|||
|
"235 0.003454 0.000629 0.003033 \n",
|
|||
|
"236 0.003514 0.000730 0.001849 \n",
|
|||
|
"237 0.003530 0.000800 0.000865 \n",
|
|||
|
"... ... ... ... \n",
|
|||
|
"6965 0.014719 0.006252 0.008788 \n",
|
|||
|
"6966 0.015115 0.006437 0.007986 \n",
|
|||
|
"6967 0.015243 0.006608 0.003560 \n",
|
|||
|
"6968 0.015473 0.006826 0.005609 \n",
|
|||
|
"6969 0.015709 0.007232 0.007341 \n",
|
|||
|
"\n",
|
|||
|
" daily_vaccinations total_vaccinations_per_hundred \\\n",
|
|||
|
"46 0.000100 0.000751 \n",
|
|||
|
"234 0.004605 0.004030 \n",
|
|||
|
"235 0.004431 0.004235 \n",
|
|||
|
"236 0.004376 0.004371 \n",
|
|||
|
"237 0.004069 0.004440 \n",
|
|||
|
"... ... ... \n",
|
|||
|
"6965 0.010273 0.289051 \n",
|
|||
|
"6966 0.011229 0.296974 \n",
|
|||
|
"6967 0.011531 0.300526 \n",
|
|||
|
"6968 0.011996 0.306058 \n",
|
|||
|
"6969 0.012412 0.313367 \n",
|
|||
|
"\n",
|
|||
|
" people_vaccinated_per_hundred people_fully_vaccinated_per_hundred \\\n",
|
|||
|
"46 0.000906 0.000344 \n",
|
|||
|
"234 0.006229 0.000688 \n",
|
|||
|
"235 0.006342 0.001033 \n",
|
|||
|
"236 0.006455 0.001033 \n",
|
|||
|
"237 0.006569 0.001205 \n",
|
|||
|
"... ... ... \n",
|
|||
|
"6965 0.389468 0.136465 \n",
|
|||
|
"6966 0.400000 0.140423 \n",
|
|||
|
"6967 0.403398 0.144209 \n",
|
|||
|
"6968 0.409400 0.149028 \n",
|
|||
|
"6969 0.415629 0.157804 \n",
|
|||
|
"\n",
|
|||
|
" daily_vaccinations_per_million \\\n",
|
|||
|
"46 0.001622 \n",
|
|||
|
"234 0.004773 \n",
|
|||
|
"235 0.004589 \n",
|
|||
|
"236 0.004533 \n",
|
|||
|
"237 0.004220 \n",
|
|||
|
"... ... \n",
|
|||
|
"6965 0.152606 \n",
|
|||
|
"6966 0.166814 \n",
|
|||
|
"6967 0.171292 \n",
|
|||
|
"6968 0.178221 \n",
|
|||
|
"6969 0.184395 \n",
|
|||
|
"\n",
|
|||
|
" vaccines \\\n",
|
|||
|
"46 Pfizer/BioNTech \n",
|
|||
|
"234 Oxford/AstraZeneca \n",
|
|||
|
"235 Oxford/AstraZeneca \n",
|
|||
|
"236 Oxford/AstraZeneca \n",
|
|||
|
"237 Oxford/AstraZeneca, Sinopharm/Beijing, Sputnik V \n",
|
|||
|
"... ... \n",
|
|||
|
"6965 Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm... \n",
|
|||
|
"6966 Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm... \n",
|
|||
|
"6967 Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm... \n",
|
|||
|
"6968 Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm... \n",
|
|||
|
"6969 Oxford/AstraZeneca, Pfizer/BioNTech, Sinopharm... \n",
|
|||
|
"\n",
|
|||
|
" source_name \\\n",
|
|||
|
"46 Ministry of Health \n",
|
|||
|
"234 Ministry of Health \n",
|
|||
|
"235 Ministry of Health \n",
|
|||
|
"236 Ministry of Health \n",
|
|||
|
"237 Ministry of Health \n",
|
|||
|
"... ... \n",
|
|||
|
"6965 National Emergency Crisis and Disaster Managem... \n",
|
|||
|
"6966 National Emergency Crisis and Disaster Managem... \n",
|
|||
|
"6967 National Emergency Crisis and Disaster Managem... \n",
|
|||
|
"6968 National Emergency Crisis and Disaster Managem... \n",
|
|||
|
"6969 National Emergency Crisis and Disaster Managem... \n",
|
|||
|
"\n",
|
|||
|
" source_website \n",
|
|||
|
"46 https://shendetesia.gov.al/covid19-ministria-e... \n",
|
|||
|
"234 https://www.facebook.com/investingforwellness/... \n",
|
|||
|
"235 https://www.facebook.com/investingforwellness/... \n",
|
|||
|
"236 https://www.facebook.com/investingforwellness/... \n",
|
|||
|
"237 http://datos.salud.gob.ar/dataset/vacunas-cont... \n",
|
|||
|
"... ... \n",
|
|||
|
"6965 http://covid19.ncema.gov.ae/en \n",
|
|||
|
"6966 http://covid19.ncema.gov.ae/en \n",
|
|||
|
"6967 http://covid19.ncema.gov.ae/en \n",
|
|||
|
"6968 http://covid19.ncema.gov.ae/en \n",
|
|||
|
"6969 http://covid19.ncema.gov.ae/en \n",
|
|||
|
"\n",
|
|||
|
"[2367 rows x 15 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 112,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.dropna() # usunięcie wierszy z polami NaN"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.7.2"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 5
|
|||
|
}
|