Added evaluation
This commit is contained in:
parent
d566b3869a
commit
15065514a9
41
Jenkinsfile_evaluation
Normal file
41
Jenkinsfile_evaluation
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
pipeline {
|
||||||
|
agent {dockerfile true}
|
||||||
|
parameters {
|
||||||
|
buildSelector(
|
||||||
|
defaultSelector: lastSuccessful(),
|
||||||
|
description: 'Which build to use for copying artifacts',
|
||||||
|
name: 'BUILD_SELECTOR'
|
||||||
|
)
|
||||||
|
buildSelector(
|
||||||
|
defaultSelector: lastSuccessful(),
|
||||||
|
description: 'Which build to use for copying artifacts',
|
||||||
|
name: 'WHICH_BUILD_TRAIN'
|
||||||
|
)
|
||||||
|
}
|
||||||
|
stages {
|
||||||
|
stage('copyArtifacts') {
|
||||||
|
steps {
|
||||||
|
copyArtifacts fingerprintArtifacts: true, projectName: 's434804-create-dataset', selector: buildParameter('BUILD_SELECTOR')
|
||||||
|
copyArtifacts fingerprintArtifacts: true, projectName: 's434804-training/master', selector: buildParameter('WHICH_BUILD_TRAIN')
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('evaluation') {
|
||||||
|
steps {
|
||||||
|
sh 'chmod +x tensor-eval.py'
|
||||||
|
sh 'python3 "tensor-eval.py" >> evaluation.txt'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('archiveArtifacts') {
|
||||||
|
steps{
|
||||||
|
archiveArtifacts 'evaluation.txt'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('sendMail') {
|
||||||
|
steps{
|
||||||
|
emailext body: currentBuild.result ?: 'EVALUATION SUCCESS',
|
||||||
|
subject: 's434804',
|
||||||
|
to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
21
tensor-eval.py
Normal file
21
tensor-eval.py
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.linear_model import LinearRegression
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.metrics import mean_squared_error as rmse
|
||||||
|
|
||||||
|
reg = LinearRegression()
|
||||||
|
|
||||||
|
alldata = pd.read_csv(
|
||||||
|
'country_vaccinations.csv', header=0, skipinitialspace=True,
|
||||||
|
usecols=['total_vaccinations', 'people_vaccinated', 'daily_vaccinations' ,'daily_vaccinations_per_million']).dropna()
|
||||||
|
|
||||||
|
X = alldata[[c for c in alldata.columns if c != 'daily_vaccinations']]
|
||||||
|
y = alldata['daily_vaccinations']
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 6)
|
||||||
|
lin_reg = reg.fit(X_train, y_train)
|
||||||
|
score = lin_reg.score(X_test, y_test)
|
||||||
|
prediction = lin_reg.predict(X_test)
|
||||||
|
print("RMSE:", rmse(y_test, prediction, squared=False))
|
||||||
|
print("Score:", score)
|
Loading…
Reference in New Issue
Block a user