added sacred
This commit is contained in:
parent
4aae76c38b
commit
71864a36b3
@ -31,12 +31,15 @@ pipeline {
|
|||||||
sh 'chmod +x ./tensor-eval.py'
|
sh 'chmod +x ./tensor-eval.py'
|
||||||
sh 'python3 ./tensor-eval.py $BUILD_NUMBER >> evaluation.txt'
|
sh 'python3 ./tensor-eval.py $BUILD_NUMBER >> evaluation.txt'
|
||||||
sh 'python3 ./tensor-plot.py'
|
sh 'python3 ./tensor-plot.py'
|
||||||
|
sh 'python3 ./sacred1.py'
|
||||||
|
sh 'python3 ./sacred2.py'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
stage('archiveArtifacts') {
|
stage('archiveArtifacts') {
|
||||||
steps{
|
steps{
|
||||||
archiveArtifacts 'evaluation.txt'
|
archiveArtifacts 'evaluation.txt'
|
||||||
archiveArtifacts 'evaluation_plot.png'
|
archiveArtifacts 'evaluation_plot.png'
|
||||||
|
archiveArtifacts 'sacred/**'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
56
sacred1.py
Normal file
56
sacred1.py
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from tensorflow import keras
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.metrics import mean_squared_error as rmse
|
||||||
|
from sacred import Experiment
|
||||||
|
from datetime import datetime
|
||||||
|
from sacred.observers import FileStorageObserver
|
||||||
|
ex = Experiment("file_observer", interactive=False, save_git_info=False)
|
||||||
|
ex.observers.append(FileStorageObserver('sacred/my_runs'))
|
||||||
|
|
||||||
|
|
||||||
|
@ex.config
|
||||||
|
def my_config():
|
||||||
|
test_size = 0.2
|
||||||
|
epochs = 100
|
||||||
|
batch_size = 32
|
||||||
|
|
||||||
|
|
||||||
|
@ex.capture
|
||||||
|
def create_model(test_size, epochs, batch_size, _run):
|
||||||
|
_run.info["prepare_model_ts"] = str(datetime.now())
|
||||||
|
df = pd.read_csv('country_vaccinations.csv').dropna()
|
||||||
|
dataset = df.iloc[:, 3:-3]
|
||||||
|
dataset = df.groupby(by=["country"], dropna=True).sum()
|
||||||
|
X = dataset.loc[:,dataset.columns != "daily_vaccinations"]
|
||||||
|
y = dataset.loc[:,dataset.columns == "daily_vaccinations"]
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = test_size, random_state = 6)
|
||||||
|
|
||||||
|
model = keras.Sequential([
|
||||||
|
keras.layers.Dense(512,input_dim = X_train.shape[1],kernel_initializer='normal', activation='relu'),
|
||||||
|
keras.layers.Dense(512,kernel_initializer='normal', activation='relu'),
|
||||||
|
keras.layers.Dense(256,kernel_initializer='normal', activation='relu'),
|
||||||
|
keras.layers.Dense(256,kernel_initializer='normal', activation='relu'),
|
||||||
|
keras.layers.Dense(128,kernel_initializer='normal', activation='relu'),
|
||||||
|
keras.layers.Dense(1,kernel_initializer='normal', activation='linear'),
|
||||||
|
])
|
||||||
|
|
||||||
|
model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mean_absolute_error'])
|
||||||
|
|
||||||
|
model.fit(X_train, y_train, epochs = epochs, validation_split = 0.3, batch_size = batch_size)
|
||||||
|
|
||||||
|
prediction = model.predict(X_test)
|
||||||
|
rmse_result = rmse(y_test, prediction, squared = False)
|
||||||
|
print(prediction)
|
||||||
|
_run.info["Results: "] = rmse_result
|
||||||
|
model.save('vaccines_model')
|
||||||
|
return rmse_result
|
||||||
|
|
||||||
|
|
||||||
|
@ex.automain
|
||||||
|
def my_main(test_size, epochs, batch_size):
|
||||||
|
print(create_model())
|
||||||
|
|
||||||
|
r = ex.run()
|
||||||
|
ex.add_artifact("vaccines_model/saved_model.pb")
|
56
sacred2.py
Normal file
56
sacred2.py
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from tensorflow import keras
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.metrics import mean_squared_error as rmse
|
||||||
|
from sacred import Experiment
|
||||||
|
from datetime import datetime
|
||||||
|
from sacred.observers import MongoObserver
|
||||||
|
ex = Experiment("file_observer", interactive=False, save_git_info=False)
|
||||||
|
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred'))
|
||||||
|
|
||||||
|
|
||||||
|
@ex.config
|
||||||
|
def my_config():
|
||||||
|
test_size = 0.2
|
||||||
|
epochs = 100
|
||||||
|
batch_size = 32
|
||||||
|
|
||||||
|
|
||||||
|
@ex.capture
|
||||||
|
def create_model(test_size, epochs, batch_size, _run):
|
||||||
|
_run.info["prepare_model_ts"] = str(datetime.now())
|
||||||
|
df = pd.read_csv('country_vaccinations.csv').dropna()
|
||||||
|
dataset = df.iloc[:, 3:-3]
|
||||||
|
dataset = df.groupby(by=["country"], dropna=True).sum()
|
||||||
|
X = dataset.loc[:,dataset.columns != "daily_vaccinations"]
|
||||||
|
y = dataset.loc[:,dataset.columns == "daily_vaccinations"]
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = test_size, random_state = 6)
|
||||||
|
|
||||||
|
model = keras.Sequential([
|
||||||
|
keras.layers.Dense(512,input_dim = X_train.shape[1],kernel_initializer='normal', activation='relu'),
|
||||||
|
keras.layers.Dense(512,kernel_initializer='normal', activation='relu'),
|
||||||
|
keras.layers.Dense(256,kernel_initializer='normal', activation='relu'),
|
||||||
|
keras.layers.Dense(256,kernel_initializer='normal', activation='relu'),
|
||||||
|
keras.layers.Dense(128,kernel_initializer='normal', activation='relu'),
|
||||||
|
keras.layers.Dense(1,kernel_initializer='normal', activation='linear'),
|
||||||
|
])
|
||||||
|
|
||||||
|
model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mean_absolute_error'])
|
||||||
|
|
||||||
|
model.fit(X_train, y_train, epochs = epochs, validation_split = 0.3, batch_size = batch_size)
|
||||||
|
|
||||||
|
prediction = model.predict(X_test)
|
||||||
|
rmse_result = rmse(y_test, prediction, squared = False)
|
||||||
|
print(prediction)
|
||||||
|
_run.info["Results: "] = rmse_result
|
||||||
|
model.save('vaccines_model')
|
||||||
|
return rmse_result
|
||||||
|
|
||||||
|
|
||||||
|
@ex.automain
|
||||||
|
def my_main(test_size, epochs, batch_size):
|
||||||
|
print(create_model())
|
||||||
|
|
||||||
|
r = ex.run()
|
||||||
|
ex.add_artifact("vaccines_model/saved_model.pb")
|
Loading…
Reference in New Issue
Block a user