import json import mlflow as mlf from mlflow.tracking import MlflowClient import pandas as pd model_name = "s430705" model_version = 30 mlf.set_tracking_uri("http://172.17.0.1:5000") model = mlf.pyfunc.load_model( model_uri=f"models:/{model_name}/{model_version}" ) client = MlflowClient() models_version = client.search_model_versions("name='s430705'") input_path = models_version[-1].source with open(f'{input_path}/input_example.json', 'r') as datafile: data = json.load(datafile)['inputs'] input_dictionary = {idx:x for idx, x in enumerate(data)} input_ex = pd.DataFrame([input_dictionary]) print(model.predict(input_ex))