Compare commits
No commits in common. "master" and "master" have entirely different histories.
5272
dev-0/in.tsv
5272
dev-0/in.tsv
File diff suppressed because one or more lines are too long
5272
dev-0/out.tsv
5272
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
@ -1,59 +0,0 @@
|
|||||||
import random
|
|
||||||
import torch
|
|
||||||
from transformers import (
|
|
||||||
AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
|
||||||
)
|
|
||||||
|
|
||||||
class DataWrapper(torch.utils.data.Dataset):
|
|
||||||
def __init__(self, encodings, labels):
|
|
||||||
self.encodings = encodings
|
|
||||||
self.labels = labels
|
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
|
||||||
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
|
||||||
item['labels'] = torch.tensor(self.labels[idx])
|
|
||||||
return item
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self.labels)
|
|
||||||
|
|
||||||
def read_data(file_path):
|
|
||||||
with open(file_path) as f:
|
|
||||||
return f.readlines()
|
|
||||||
|
|
||||||
def wirte_output(file_path, data):
|
|
||||||
with open(file_path, 'w') as writer:
|
|
||||||
for result in trainer.predict(data):
|
|
||||||
writer.write(f"{str(result)}\n")
|
|
||||||
|
|
||||||
print("STEP 1 - READ DATA")
|
|
||||||
X_train = read_data('train/in.tsv')
|
|
||||||
y_train = read_data('train/expected.tsv')
|
|
||||||
X_dev = read_data('dev-0/in.tsv')
|
|
||||||
X_test = read_data('test-A/in.tsv')
|
|
||||||
|
|
||||||
print("STEP 2 - SHUFFLE")
|
|
||||||
data_train = list(zip(X_train, y_train))
|
|
||||||
data_train = random.sample(data_train, 15000)
|
|
||||||
|
|
||||||
|
|
||||||
print("STEP 3 - FINE TUNING")
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
|
||||||
|
|
||||||
train_encodings = tokenizer([text[0] for text in data_train], truncation=True, padding=True)
|
|
||||||
train_dataset = DataWrapper(train_encodings, [int(text[1]) for text in data_train])
|
|
||||||
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained("roberta-base", num_labels=2)
|
|
||||||
args = TrainingArguments("model")
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
# device = torch.device("cuda")
|
|
||||||
model.to(device)
|
|
||||||
|
|
||||||
trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
print("STEP 4 - WRITE OUTPUT")
|
|
||||||
wirte_output('train/out.tsv', X_train)
|
|
||||||
wirte_output('dev-0/out.tsv', X_dev)
|
|
||||||
wirte_output('test-A/out.tsv', X_test)
|
|
@ -1,5 +0,0 @@
|
|||||||
Likelihood 0.0000
|
|
||||||
Accuracy 0.7517
|
|
||||||
F1.0 0.6119
|
|
||||||
Precision 0.6848
|
|
||||||
Recall 0.5531
|
|
94
log_reg.py
94
log_reg.py
@ -1,94 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
import torch
|
|
||||||
import csv
|
|
||||||
import gensim.downloader
|
|
||||||
import torch
|
|
||||||
from nltk import word_tokenize
|
|
||||||
|
|
||||||
class NeuralNetwork(torch.nn.Module):
|
|
||||||
def __init__(self, input_size, hidden_size, num_classes):
|
|
||||||
super(NeuralNetwork, self).__init__()
|
|
||||||
self.l1 = torch.nn.Linear(input_size, hidden_size)
|
|
||||||
self.l2 = torch.nn.Linear(hidden_size, num_classes)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.l1(x)
|
|
||||||
x = torch.relu(x)
|
|
||||||
x = self.l2(x)
|
|
||||||
x = torch.sigmoid(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
print('STEP 1 - LOAD DATA')
|
|
||||||
names = ['content', 'id', 'label']
|
|
||||||
train_data_content = pd.read_table('train/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
|
||||||
train_data_labels = pd.read_table('train/expected.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[2:])
|
|
||||||
dev_data = pd.read_table('dev-0/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
|
||||||
test_data = pd.read_table('test-A/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
|
||||||
|
|
||||||
print('STEP 2 - SET PARAMS')
|
|
||||||
hidden_size = int(input('Hidden units size: ') or '600')
|
|
||||||
epochs = int(input("Epochs: ") or '5')
|
|
||||||
batch_size = int(input("Batch size: ") or '15')
|
|
||||||
|
|
||||||
print('STEP 3 - PREPROCESSING')
|
|
||||||
# lowercase all content
|
|
||||||
X_train = train_data_content['content'].str.lower()
|
|
||||||
y_train = train_data_labels['label']
|
|
||||||
X_dev = dev_data['content'].str.lower()
|
|
||||||
X_test = test_data['content'].str.lower()
|
|
||||||
|
|
||||||
# tokenize datasets
|
|
||||||
X_train = [word_tokenize(content) for content in X_train]
|
|
||||||
X_dev = [word_tokenize(content) for content in X_dev]
|
|
||||||
X_test = [word_tokenize(content) for content in X_test]
|
|
||||||
|
|
||||||
# use Google word2vec algorithm
|
|
||||||
word2vec = gensim.downloader.load('word2vec-google-news-300')
|
|
||||||
X_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_train]
|
|
||||||
X_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_dev]
|
|
||||||
X_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_test]
|
|
||||||
|
|
||||||
print('STEP 4 - MODEL TRAINING')
|
|
||||||
#prepare neural model
|
|
||||||
|
|
||||||
model = NeuralNetwork(300, hidden_size, 1)
|
|
||||||
criterion = torch.nn.BCELoss()
|
|
||||||
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
|
|
||||||
|
|
||||||
for epoch in range(epochs):
|
|
||||||
model.train()
|
|
||||||
for i in range(0, y_train.shape[0], batch_size):
|
|
||||||
X = X_train[i:i+batch_size]
|
|
||||||
X = torch.tensor(X)
|
|
||||||
y = y_train[i:i+batch_size]
|
|
||||||
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
|
||||||
outputs = model(X.float())
|
|
||||||
loss = criterion(outputs, y)
|
|
||||||
optimizer.zero_grad()
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
print('STEP 5 - PREDICTION')
|
|
||||||
y_dev, y_test = [], []
|
|
||||||
model.eval()
|
|
||||||
with torch.no_grad():
|
|
||||||
for i in range(0, len(X_dev), batch_size):
|
|
||||||
X = X_dev[i:i+batch_size]
|
|
||||||
X = torch.tensor(X)
|
|
||||||
outputs = model(X.float())
|
|
||||||
prediction = (outputs > 0.5)
|
|
||||||
y_dev += prediction.tolist()
|
|
||||||
for i in range(0, len(X_test), batch_size):
|
|
||||||
X = X_test[i:i+batch_size]
|
|
||||||
X = torch.tensor(X)
|
|
||||||
outputs = model(X.float())
|
|
||||||
y = (outputs > 0.5)
|
|
||||||
y_test += prediction.tolist()
|
|
||||||
|
|
||||||
print('STEP 6 - EXPORT RESULTS')
|
|
||||||
# export results to tsv
|
|
||||||
y_dev = np.asarray(y_dev, dtype=np.int32)
|
|
||||||
y_test = np.asarray(y_test, dtype=np.int32)
|
|
||||||
y_dev.tofile('./dev-0/out.tsv', sep='\n')
|
|
||||||
y_test.tofile('./test-A/out.tsv', sep='\n')
|
|
@ -1,5 +0,0 @@
|
|||||||
Likelihood 0.0000
|
|
||||||
Accuracy 0.8253
|
|
||||||
F1.0 0.7472
|
|
||||||
Precision 0.7659
|
|
||||||
Recall 0.7294
|
|
5152
test-A/in.tsv
5152
test-A/in.tsv
File diff suppressed because one or more lines are too long
5152
test-A/out.tsv
5152
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
289579
train/in.tsv
289579
train/in.tsv
File diff suppressed because one or more lines are too long
289579
train/out.tsv
289579
train/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user