from sklearn.naive_bayes import MultinomialNB from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer import pandas as pd import numpy as np from stop_words import get_stop_words stop_words = get_stop_words('polish') v = TfidfVectorizer(stop_words=None) naive_bayes=MultinomialNB() ball_train = pd.read_csv('train/train.tsv', sep='\t', error_bad_lines=False, header=None) y_train = pd.DataFrame(ball_train[0]) x_train = pd.DataFrame(ball_train[1]) x_np=x_train.to_numpy() x_np = [str(item) for item in x_np] x_train=v.fit_transform(x_np) naive_bayes.fit(x_train, y_train) ball_dev = pd.read_csv('dev-0/in.tsv', sep='\t', error_bad_lines=False, header=None) X_dev = pd.DataFrame(ball_dev) X_dev_np=X_dev.to_numpy() X_dev_np = [str(item) for item in X_dev_np] X_dev=v.transform(X_dev_np) Y_dev_predicted = naive_bayes.predict(X_dev) pd.DataFrame(Y_dev_predicted).to_csv('dev-0/out.tsv', sep='\t', index=False, header=False) ball_test=pd.read_csv('test-A/in.tsv', sep='\t', error_bad_lines=False, header=None) X_test = pd.DataFrame(ball_test) X_test_np=X_test.to_numpy() X_test_np = [str(item) for item in X_test_np] X_test=v.transform(X_test_np) Y_test_predicted = naive_bayes.predict(X_test) pd.DataFrame(Y_test_predicted).to_csv('test-A/out.tsv', sep='\t', index=False, header=False)