import pandas as pd import numpy as np from gensim import downloader import torch from nltk.tokenize import word_tokenize class LogisticRegressionModel(torch.nn.Module): def __init__(self, input_size): super(LogisticRegressionModel, self).__init__() self.l1 = torch.nn.Linear(input_size, 500) self.l2 = torch.nn.Linear(500, 1) def forward(self, x): x = self.l1(x) x = torch.relu(x) x = self.l2(x) x = torch.sigmoid(x) return x ball_train = pd.read_csv('train/train.tsv', sep='\t', error_bad_lines=False, header=None) y_train = pd.DataFrame(ball_train[0]) x_train = pd.DataFrame(ball_train[1]) x_np=x_train.to_numpy() x_np = [str(item) for item in x_np] x_train=[word_tokenize(i) for i in x_np] ball_dev = pd.read_csv('dev-0/in.tsv', sep='\t', error_bad_lines=False, header=None) X_dev = pd.DataFrame(ball_dev) X_dev_np=X_dev.to_numpy() X_dev_np = [str(item) for item in X_dev_np] X_dev=[word_tokenize(i) for i in X_dev_np] ball_test=pd.read_csv('test-A/in.tsv', sep='\t', error_bad_lines=False, header=None) X_test = pd.DataFrame(ball_test) X_test_np=X_test.to_numpy() X_test_np = [str(item) for item in X_test_np] X_test=[word_tokenize(i) for i in X_test_np] w2v = downloader.load('word2vec-google-news-300') x_train = [np.mean([w2v[word] for word in content if word in w2v] or [np.zeros(300)], axis=0) for content in x_train] X_dev = [np.mean([w2v[word] for word in content if word in w2v] or [np.zeros(300)], axis=0) for content in X_dev] X_test = [np.mean([w2v[word] for word in content if word in w2v] or [np.zeros(300)], axis=0) for content in X_test] lr_model = LogisticRegressionModel(300) BATCH_SIZE = 5 criterion = torch.nn.BCELoss() optimizer = torch.optim.SGD(lr_model.parameters(), lr = 0.1) loss_score = 0 acc_score = 0 items_total = 0 lr_model.train() for i in range(0, y_train.shape[0], BATCH_SIZE): X = x_train[i:i + BATCH_SIZE] X = torch.tensor(X) Y = y_train[i:i + BATCH_SIZE] Y = torch.tensor(Y.astype(np.float32).to_numpy()).reshape(-1, 1) Y_predictions = lr_model(X.float()) acc_score += torch.sum((Y_predictions > 0.5) == Y).item() items_total += Y.shape[0] optimizer.zero_grad() loss = criterion(Y_predictions, Y) loss.backward() optimizer.step() loss_score += loss.item() * Y.shape[0] Y_dev_predicted, Y_test_predicted = [], [] lr_model.eval() with torch.no_grad(): for i in range(0, len(X_dev), BATCH_SIZE): X = X_dev[i:i+BATCH_SIZE] X = torch.tensor(X) outputs = lr_model(X.float()) prediction = (outputs > 0.5) Y_dev_predicted += prediction.tolist() for i in range(0, len(X_test), BATCH_SIZE): X = X_test[i:i+BATCH_SIZE] X = torch.tensor(X) outputs = lr_model(X.float()) prediction = (outputs > 0.5) Y_test_predicted += prediction.tolist() for i in range(0, len(Y_dev_predicted)): if Y_dev_predicted[i]==[True]: Y_dev_predicted[i]=1 else: Y_dev_predicted[i]=0 for i in range(0, len(Y_test_predicted)): if Y_test_predicted[i]==[True]: Y_test_predicted[i]=1 else: Y_test_predicted[i]=0 pd.DataFrame(Y_dev_predicted).to_csv('dev-0/out.tsv', sep='\t', index=False, header=False) pd.DataFrame(Y_test_predicted).to_csv('test-A/out.tsv', sep='\t', index=False, header=False)