minor fixes

This commit is contained in:
JPogodzinski 2021-06-01 17:19:33 +02:00
parent 46b5ed42c7
commit d61d82c919
3 changed files with 149 additions and 9 deletions

View File

@ -1,12 +1,19 @@
library(highcharter)
library(tidyr)
library(plotly)
library(dplyr)
basedf<-read.csv("dev/matma_bayes/heart.csv", header = TRUE)
siha<-read.csv('dev/matma_bayes/sex_if_heart_attack.csv')
df2<-read.csv('dev/matma_bayes/age_sex_heart_attack.csv')
chol<-read.csv('dev/matma_bayes/chol_sex_heart_attack.csv')
basedf$sex[basedf$sex==1]<-'Man'
basedf$sex[basedf$sex==0]<-'Woman'
df2$sex[df2$sex==1]<-'Man'
df2$sex[df2$sex==0]<-'Woman'
chol$sex[chol$sex==1]<-'Man'
chol$sex[chol$sex==0]<-'Woman'
df2$x<-paste(df2$sex,df2$age)
df2$comb<-
basedf%>%
count(sex)%>% arrange(n)%>%
@ -15,16 +22,10 @@ basedf%>%
siha%>%
hchart(type = "pie", hcaes(x=sex, y = Probability, color = Probability, name='Probability')) %>%
hchart(type = "pie", hcaes(x=sex, y = Probability, color = Probability), name='Probability') %>%
hc_title(text="<b>Sex if heart attack</b>")
basedf%>%
group_by(sex, chol)%>%
count()%>%
hchart('area', hcaes(x='chol', y='n', group='sex'))%>%
hc_xAxis(title=list(text='Cholesterol'))%>%
hc_yAxis(title=list(text='Quantity'))%>%
hc_title(text="<b>Number of terrorists attacks in each year by region</b>")
df2%>%
@ -34,3 +35,20 @@ df2%>%
hc_yAxis(title=list(text='Probability'))%>%
hc_legend(enabled=F)%>%
hc_title(text="<b>Probability of heart attack for sex and age group</b>")
chol %>%
drop_na(heart.attack)%>%
plot_ly(x = ~heart.attack,
y = ~sex,
type = 'bar',
orientation = 'h',
color = ~chol,
colors ='Spectral',
hoverinfo = 'text',
text = ~paste('Probability:', heart.attack, '<br> Interval:', chol),
xaxis=list(categoryorder='total descending')) %>%
layout(title = 'Chol/probability',
xaxis = list(title = "Probability"),
yaxis = list(title = "Cholesterol"))

31
chol_sex_heart_attack.csv Normal file
View File

@ -0,0 +1,31 @@
chol,sex,heart attack,no heart attack
"[120, 150]",0,0.7900763358778626,0.20992366412213742
"[120, 150]",1,0.5057933317569164,0.4942066682430835
"[150, 180]",0,0.7150259067357513,0.28497409326424866
"[150, 180]",1,0.40557451649601817,0.5944254835039818
"[180, 210]",0,0.8168701442841287,0.18312985571587126
"[180, 210]",1,0.5481189641089703,0.4518810358910296
"[210, 240]",0,0.7900763358778626,0.2099236641221374
"[210, 240]",1,0.5057933317569164,0.4942066682430835
"[240, 270]",0,0.7594186538732892,0.2405813461267109
"[240, 270]",1,0.46189495365602473,0.5381050463439754
"[270, 300]",0,0.5654082528533801,0.43459174714661986
"[270, 300]",1,0.26132942377673635,0.7386705762232636
"[300, 330]",0,0.7553882996920972,0.24461170030790286
"[300, 330]",1,0.45644780538550794,0.5435521946144921
"[330, 360]",0,0.5564516129032259,0.4435483870967742
"[330, 360]",1,0.2543703175169461,0.745629682483054
"[360, 390]",0,1.0,0.0
"[360, 390]",1,1.0,0.0
"[390, 420]",0,0.7150259067357513,0.2849740932642487
"[390, 420]",1,0.4055745164960181,0.5944254835039817
"[420, 450]",0,nan,nan
"[420, 450]",1,nan,nan
"[450, 480]",0,nan,nan
"[450, 480]",1,nan,nan
"[480, 510]",0,nan,nan
"[480, 510]",1,nan,nan
"[510, 540]",0,nan,nan
"[510, 540]",1,nan,nan
"[540, 570]",0,1.0,0.0
"[540, 570]",1,1.0,0.0
1 chol sex heart attack no heart attack
2 [120, 150] 0 0.7900763358778626 0.20992366412213742
3 [120, 150] 1 0.5057933317569164 0.4942066682430835
4 [150, 180] 0 0.7150259067357513 0.28497409326424866
5 [150, 180] 1 0.40557451649601817 0.5944254835039818
6 [180, 210] 0 0.8168701442841287 0.18312985571587126
7 [180, 210] 1 0.5481189641089703 0.4518810358910296
8 [210, 240] 0 0.7900763358778626 0.2099236641221374
9 [210, 240] 1 0.5057933317569164 0.4942066682430835
10 [240, 270] 0 0.7594186538732892 0.2405813461267109
11 [240, 270] 1 0.46189495365602473 0.5381050463439754
12 [270, 300] 0 0.5654082528533801 0.43459174714661986
13 [270, 300] 1 0.26132942377673635 0.7386705762232636
14 [300, 330] 0 0.7553882996920972 0.24461170030790286
15 [300, 330] 1 0.45644780538550794 0.5435521946144921
16 [330, 360] 0 0.5564516129032259 0.4435483870967742
17 [330, 360] 1 0.2543703175169461 0.745629682483054
18 [360, 390] 0 1.0 0.0
19 [360, 390] 1 1.0 0.0
20 [390, 420] 0 0.7150259067357513 0.2849740932642487
21 [390, 420] 1 0.4055745164960181 0.5944254835039817
22 [420, 450] 0 nan nan
23 [420, 450] 1 nan nan
24 [450, 480] 0 nan nan
25 [450, 480] 1 nan nan
26 [480, 510] 0 nan nan
27 [480, 510] 1 nan nan
28 [510, 540] 0 nan nan
29 [510, 540] 1 nan nan
30 [540, 570] 0 1.0 0.0
31 [540, 570] 1 1.0 0.0

91
first.py Normal file
View File

@ -0,0 +1,91 @@
import pandas as pd
# P(B|A)*P(A)
#P(A|B)=-----------
# P(B)
data=pd.read_csv('heart.csv')
print(data)
men=0
for i in range(len(data['sex'])):
if data['sex'][i] ==1:
men+=1
print(men)
p_men=men/len(data)
print("Prawdopodobieństwo, że mężczyzna",p_men)
chol=0
for i in range(len(data['chol'])):
if data['chol'][i] >200:
chol+=1
print(chol)
p_chol=chol/len(data)
print("Prawdopodobieństwo, że cholesterol większy niż 200",p_chol)
age_over_50=0
for i in range(len(data['age'])):
if data['age'][i] >50:
age_over_50+=1
print(age_over_50)
p_age_over_50=age_over_50/len(data)
print("Prawdopodobieństwo, że wiek powyżej 50",p_age_over_50)
sugar=0
for i in range(len(data['fbs'])):
if data['fbs'][i] ==1:
sugar+=1
print(sugar)
p_sugar=sugar/len(data)
print("Prawdopodobieństwo, że wysoki cukier",p_sugar)
heart_attack=0
for i in range(len(data['target'])):
if data['target'][i] ==1:
heart_attack+=1
print(heart_attack)
p_heart_attack=heart_attack/len(data)
print("Prawdopodobieństwo dużego ryzyka zawału serca",p_heart_attack) #P(class)
man_if_heart_attack=0
for i in range(len(data['target'])):
if data['target'][i] ==1:
if data['sex'][i]==1:
man_if_heart_attack+=1
print(man_if_heart_attack)
p_man_if_heart_attack=man_if_heart_attack/len(data)
p_man_if_heart_attack=p_man_if_heart_attack/p_heart_attack
print("rawdopodobieństwo, że mężczyzna jeśli wystąpił zawał serca",p_man_if_heart_attack)
over50_if_heart_attack=0
for i in range(len(data['target'])):
if data['target'][i] ==1:
if data['age'][i]>50:
over50_if_heart_attack+=1
print(over50_if_heart_attack)
p_over50_if_heart_attack=over50_if_heart_attack/len(data)
p_over50_if_heart_attack=p_over50_if_heart_attack/p_heart_attack
print("Prawdopodobieństwo, że powyżej 50 lat jeżeli wystąpił zawał serca",p_over50_if_heart_attack)
chol_over200_if_heart_attack=0
for i in range(len(data['target'])):
if data['target'][i] ==1:
if data['chol'][i]>200:
chol_over200_if_heart_attack+=1
print(chol_over200_if_heart_attack)
p_chol_over200_if_heart_attack=chol_over200_if_heart_attack/len(data)
p_chol_over200_if_heart_attack=p_chol_over200_if_heart_attack/p_heart_attack
print("Prawdopodobieństwo, że cholestorol powyżej 200, jezeli wystąpił zawał serca",p_chol_over200_if_heart_attack)
sugar_if_heart_attack=0
for i in range(len(data['target'])):
if data['target'][i] ==1:
if data['fbs'][i]==1:
sugar_if_heart_attack+=1
print(sugar_if_heart_attack)
p_sugar_if_heart_attack=sugar_if_heart_attack/len(data)
p_sugar_if_heart_attack=p_sugar_if_heart_attack/p_heart_attack
print("Prawdopodbieństwo, że był wysoki poziom cukru jeżeli wystąpił zawał serca",p_sugar_if_heart_attack)