forked from kubapok/auta-public
Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
5c4bb10ddf |
1000
dev-0/out.tsv
1000
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
51
main.py
51
main.py
@ -1,51 +0,0 @@
|
|||||||
import pandas as pd
|
|
||||||
import numpy as np
|
|
||||||
from pathlib import Path
|
|
||||||
import seaborn as sns
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from sklearn.linear_model import LinearRegression
|
|
||||||
from sklearn.metrics import mean_squared_error
|
|
||||||
|
|
||||||
|
|
||||||
with open('names') as f_names:
|
|
||||||
names = f_names.read().rstrip('\n').split('\t')
|
|
||||||
|
|
||||||
|
|
||||||
cars_train = pd.read_csv('train/train.tsv', sep='\t', names=names)
|
|
||||||
|
|
||||||
cars_train = pd.get_dummies(cars_train, columns=['engineType'])
|
|
||||||
|
|
||||||
|
|
||||||
y_train = pd.DataFrame(cars_train['price'])
|
|
||||||
cars_train.drop('price', inplace=True, axis=1)
|
|
||||||
cars_train.drop('brand', inplace=True, axis=1)
|
|
||||||
x_train = pd.DataFrame(cars_train)
|
|
||||||
|
|
||||||
model = LinearRegression()
|
|
||||||
model.fit(x_train, y_train)
|
|
||||||
|
|
||||||
names.remove('price')
|
|
||||||
|
|
||||||
cars_dev = pd.read_csv('dev-0/in.tsv', sep='\t', names=names)
|
|
||||||
with open('dev-0/expected.tsv', 'r') as dev_exp_f:
|
|
||||||
Y_dev = np.array([float(x.rstrip('\n')) for x in dev_exp_f.readlines()])
|
|
||||||
|
|
||||||
cars_dev = pd.get_dummies(cars_dev, columns=['engineType'])
|
|
||||||
cars_dev.drop('brand', inplace=True, axis=1)
|
|
||||||
X_dev = pd.DataFrame(cars_dev)
|
|
||||||
|
|
||||||
Y_dev_predicted = model.predict(X_dev)
|
|
||||||
print(Y_dev_predicted)
|
|
||||||
pd.DataFrame(Y_dev_predicted).to_csv('dev-0/out.tsv', sep='\t', index=False, header=False)
|
|
||||||
|
|
||||||
|
|
||||||
cars_test=pd.read_csv('test-A/in.tsv', sep='\t', names=names)
|
|
||||||
cars_test = pd.get_dummies(cars_test, columns=['engineType'])
|
|
||||||
cars_test.drop('brand', inplace=True, axis=1)
|
|
||||||
X_test = pd.DataFrame(cars_test)
|
|
||||||
|
|
||||||
Y_test_predicted = model.predict(X_test)
|
|
||||||
pd.DataFrame(Y_test_predicted).to_csv('test-A/out.tsv', sep='\t', index=False, header=False)
|
|
||||||
|
|
||||||
error = np.sqrt(mean_squared_error(Y_dev, Y_dev_predicted))
|
|
||||||
print(error)
|
|
1000
test-A/out.tsv
1000
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user