from nltk import trigrams, word_tokenize from collections import defaultdict, Counter import pandas as pd import csv import regex as re def preprocess(text): text = text.lower().replace('-\\n', '').replace('\\n', ' ') return re.sub(r'\p{P}', '', text) def predict(before, after): prediction = dict(Counter(dict(trigram[before, after])).most_common(5)) result = '' prob = 0.0 for key, value in prediction.items(): prob += value result += f'{key}:{value} ' if prob == 0.0: return 'to:0.02 be:0.02 the:0.02 or:0.01 not:0.01 and:0.01 a:0.01 :0.9' result += f':{max(1 - prob, 0.01)}' return result def make_prediction(file): data = pd.read_csv(f'{file}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE) with open(f'{file}/out.tsv', 'w', encoding='utf-8') as file_out: for _, row in data.iterrows(): before, after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7]))) if len(before) < 3 or len(after) < 3: prediction = 'to:0.02 be:0.02 the:0.02 or:0.01 not:0.01 and:0.01 a:0.01 :0.9' else: prediction = predict(before[-1], after[0]) file_out.write(prediction + '\n') train_data = pd.read_csv('train/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=20000) train_labels = pd.read_csv('train/expected.tsv', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=20000) train_data = train_data[[6, 7]] train_data = pd.concat([train_data, train_labels], axis=1) train_data['line'] = train_data[6] + train_data[0] + train_data[7] trigram = defaultdict(lambda: defaultdict(lambda: 0)) rows = train_data.iterrows() rows_len = len(train_data) for index, (_, row) in enumerate(rows): text = preprocess(str(row['line'])) words = word_tokenize(text) for word_1, word_2, word_3 in trigrams(words, pad_right=True, pad_left=True): if word_1 and word_2 and word_3: trigram[(word_1, word_3)][word_2] += 1 model_len = len(trigram) for index, words_1_3 in enumerate(trigram): count = sum(trigram[words_1_3].values()) for word_2 in trigram[words_1_3]: trigram[words_1_3][word_2] += 0.25 trigram[words_1_3][word_2] /= float(count + 0.25 + len(word_2)) make_prediction('test-A') make_prediction('dev-0')