challenging-america-word-ga.../run.py
2022-04-23 19:17:09 +02:00

119 lines
2.8 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import csv
import regex as re
import kenlm
from english_words import english_words_alpha_set
from math import log10
from nltk import trigrams, word_tokenize
# In[2]:
default_pred = 'to:0.02 be:0.02 the:0.02 or:0.01 not:0.01 and:0.01 a:0.01 :0.9'
# In[3]:
def preprocess(text):
text = text.lower().replace('-\\n', '').replace('\\n', ' ')
return re.sub(r'\p{P}', '', text)
# In[4]:
train_data = pd.read_csv('train/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE,
nrows=20000)
train_labels = pd.read_csv('train/expected.tsv', sep='\t', on_bad_lines='skip', header=None,
quoting=csv.QUOTE_NONE, nrows=20000)
data = pd.concat([train_data, train_labels], axis=1)
data=train_data[6] + train_data[0] + train_data[7]
data = data.apply(preprocess)
with open("train_file.txt", "w+") as f:
for text in data:
f.write(text + "\n")
# In[5]:
KENLM_BUILD_PATH='../kenlm/kenlm/build'
get_ipython().system('$KENLM_BUILD_PATH/bin/lmplz -o 4 < train_file.txt > model.arpa')
get_ipython().system('rm train_file.txt')
# In[6]:
model = kenlm.Model("model.arpa")
# In[7]:
def predict(before, after):
best_scores = []
for word in english_words_alpha_set:
text = ' '.join([before, word, after])
text_score = model.score(text, bos=False, eos=False)
if len(best_scores) < 12:
best_scores.append((word, text_score))
else:
is_better = False
worst_score = None
for score in best_scores:
if not worst_score:
worst_score = score
else:
if worst_score[1] > score[1]:
worst_score = score
if worst_score[1] < text_score:
best_scores.remove(worst_score)
best_scores.append((word, text_score))
probs = sorted(best_scores, key=lambda tup: tup[1], reverse=True)
pred_str = ''
for word, prob in probs:
pred_str += f'{word}:{prob} '
pred_str += f':{log10(0.99)}'
return pred_str
# In[8]:
def make_prediction(path, result_path):
data = pd.read_csv(path, sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)
with open(result_path, 'w', encoding='utf-8') as file_out:
for _, row in data.iterrows():
before, after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7])))
if len(before) < 2 or len(after) < 2:
prediction = default_pred
else:
prediction = predict(before[-1], after[0])
file_out.write(prediction + '\n')
# In[9]:
make_prediction("dev-0/in.tsv.xz", "dev-0/out.tsv")
# In[10]:
make_prediction("test-A/in.tsv.xz", "test-A/out.tsv")