mlflow
This commit is contained in:
parent
b511261142
commit
6244a25e5d
11
MLProject
Normal file
11
MLProject
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
name: 437622-mlflow
|
||||||
|
|
||||||
|
docker_env:
|
||||||
|
image: jpogodzinski/ium:1
|
||||||
|
|
||||||
|
entry_points:
|
||||||
|
main:
|
||||||
|
parameters:
|
||||||
|
epochs: {type: int, default: 15}
|
||||||
|
batch_size: {type: int, default: 16}
|
||||||
|
command: "python3 zad8-mlflow.py {epochs} {batch_size}"
|
BIN
evaluation.png
BIN
evaluation.png
Binary file not shown.
Before Width: | Height: | Size: 12 KiB After Width: | Height: | Size: 11 KiB |
@ -1,3 +1,4 @@
|
|||||||
0.5406397482957525
|
0.5406397482957525
|
||||||
0.5406397482957525
|
0.5406397482957525
|
||||||
0.5406397482957525
|
0.5406397482957525
|
||||||
|
0.5406397482957525
|
||||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
2
zad5.py
2
zad5.py
@ -29,7 +29,7 @@ model.add(layers.Dense(5, activation="relu", name="layer4"))
|
|||||||
model.add(layers.Dense(1, activation="relu", name="output"))
|
model.add(layers.Dense(1, activation="relu", name="output"))
|
||||||
|
|
||||||
model.compile(
|
model.compile(
|
||||||
optimizer=keras.optimizers.RMSprop(),
|
optimizer=keras.optimizers.Adam(),
|
||||||
loss=keras.losses.MeanSquaredError(),
|
loss=keras.losses.MeanSquaredError(),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
75
zad7-sacred-mongo.py
Normal file
75
zad7-sacred-mongo.py
Normal file
@ -0,0 +1,75 @@
|
|||||||
|
from sacred import Experiment
|
||||||
|
from sacred.observers import MongoObserver
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
from tensorflow import keras
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
from tensorflow.keras import layers
|
||||||
|
|
||||||
|
|
||||||
|
ex = Experiment("437622-mongo", interactive=False, save_git_info=False)
|
||||||
|
#ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred'))
|
||||||
|
|
||||||
|
@ex.config
|
||||||
|
def my_config():
|
||||||
|
epochs = 15
|
||||||
|
batch_size = 16
|
||||||
|
|
||||||
|
@ex.capture
|
||||||
|
def prepare_model(epochs, batch_size, _run):
|
||||||
|
model_name = "model"
|
||||||
|
train = pd.read_csv('train.csv', header=None, skiprows=1)
|
||||||
|
indexNames = train[train[1] == 2].index
|
||||||
|
train.drop(indexNames, inplace=True)
|
||||||
|
cols = [0, 2, 3]
|
||||||
|
X = train[cols].to_numpy()
|
||||||
|
y = train[1].to_numpy()
|
||||||
|
X = np.asarray(X).astype('float32')
|
||||||
|
|
||||||
|
model = keras.Sequential(name="winner")
|
||||||
|
model.add(keras.Input(shape=(3), name="game_info"))
|
||||||
|
model.add(layers.Dense(4, activation="relu", name="layer1"))
|
||||||
|
model.add(layers.Dense(8, activation="relu", name="layer2"))
|
||||||
|
model.add(layers.Dense(8, activation="relu", name="layer3"))
|
||||||
|
model.add(layers.Dense(5, activation="relu", name="layer4"))
|
||||||
|
model.add(layers.Dense(1, activation="relu", name="output"))
|
||||||
|
|
||||||
|
model.compile(
|
||||||
|
optimizer=keras.optimizers.RMSprop(),
|
||||||
|
loss=keras.losses.MeanSquaredError(),
|
||||||
|
)
|
||||||
|
|
||||||
|
history = model.fit(
|
||||||
|
X,
|
||||||
|
y,
|
||||||
|
batch_size=batch_size,
|
||||||
|
epochs=epochs, )
|
||||||
|
|
||||||
|
model.save(model_name)
|
||||||
|
|
||||||
|
test = pd.read_csv('test.csv', header=None, skiprows=1)
|
||||||
|
cols = [0, 2, 3]
|
||||||
|
indexNames = test[test[1] == 2].index
|
||||||
|
test.drop(indexNames, inplace=True)
|
||||||
|
X_test = test[cols].to_numpy()
|
||||||
|
y_test = test[1].to_numpy()
|
||||||
|
X_test = np.asarray(X_test).astype('float32')
|
||||||
|
|
||||||
|
predictions = model.predict(X_test)
|
||||||
|
pd.DataFrame(predictions).to_csv('results.csv', sep='\t', index=False, header=False)
|
||||||
|
|
||||||
|
|
||||||
|
acc = accuracy_score(y_test, predictions)
|
||||||
|
print('Accuracy: ', acc)
|
||||||
|
return acc
|
||||||
|
|
||||||
|
@ex.automain
|
||||||
|
def my_main(epochs, batch_size):
|
||||||
|
print(prepare_model())
|
||||||
|
|
||||||
|
ex.run()
|
||||||
|
ex.add_artifact('model')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
64
zad8-mlflow.py
Normal file
64
zad8-mlflow.py
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
import sys
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
from tensorflow import keras
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
from tensorflow.keras import layers
|
||||||
|
import mlflow
|
||||||
|
|
||||||
|
def train(epochs, batch_size):
|
||||||
|
model_name = "model"
|
||||||
|
train = pd.read_csv('train.csv', header=None, skiprows=1)
|
||||||
|
indexNames = train[train[1] == 2].index
|
||||||
|
train.drop(indexNames, inplace=True)
|
||||||
|
cols = [0, 2, 3]
|
||||||
|
X = train[cols].to_numpy()
|
||||||
|
y = train[1].to_numpy()
|
||||||
|
X = np.asarray(X).astype('float32')
|
||||||
|
|
||||||
|
model = keras.Sequential(name="winner")
|
||||||
|
model.add(keras.Input(shape=(3), name="game_info"))
|
||||||
|
model.add(layers.Dense(4, activation="relu", name="layer1"))
|
||||||
|
model.add(layers.Dense(8, activation="relu", name="layer2"))
|
||||||
|
model.add(layers.Dense(8, activation="relu", name="layer3"))
|
||||||
|
model.add(layers.Dense(5, activation="relu", name="layer4"))
|
||||||
|
model.add(layers.Dense(1, activation="relu", name="output"))
|
||||||
|
|
||||||
|
model.compile(
|
||||||
|
optimizer=keras.optimizers.Adam(),
|
||||||
|
loss=keras.losses.MeanSquaredError(),
|
||||||
|
)
|
||||||
|
|
||||||
|
history = model.fit(
|
||||||
|
X,
|
||||||
|
y,
|
||||||
|
batch_size=batch_size,
|
||||||
|
epochs=epochs, )
|
||||||
|
|
||||||
|
model.save(model_name)
|
||||||
|
|
||||||
|
test = pd.read_csv('test.csv', header=None, skiprows=1)
|
||||||
|
cols = [0, 2, 3]
|
||||||
|
indexNames = test[test[1] == 2].index
|
||||||
|
test.drop(indexNames, inplace=True)
|
||||||
|
X_test = test[cols].to_numpy()
|
||||||
|
y_test = test[1].to_numpy()
|
||||||
|
X_test = np.asarray(X_test).astype('float32')
|
||||||
|
|
||||||
|
predictions = model.predict(X_test)
|
||||||
|
pd.DataFrame(predictions).to_csv('results.csv', sep='\t', index=False, header=False)
|
||||||
|
|
||||||
|
acc = accuracy_score(y_test, predictions)
|
||||||
|
print('Accuracy: ', acc)
|
||||||
|
return acc, model
|
||||||
|
|
||||||
|
|
||||||
|
epochs = int(sys.argv[1]) if len(sys.argv) > 1 else 15
|
||||||
|
batch_size = int(sys.argv[2]) if len(sys.argv) > 2 else 16
|
||||||
|
|
||||||
|
with mlflow.start_run():
|
||||||
|
acc, model = train(epochs, batch_size)
|
||||||
|
mlflow.log_param("epochs", epochs)
|
||||||
|
mlflow.log_param("batch_size", batch_size)
|
||||||
|
mlflow.log_metric("accuracy", acc)
|
||||||
|
mlflow.keras.log_model(model, 'model')
|
Loading…
Reference in New Issue
Block a user