254 lines
9.0 KiB
C++
254 lines
9.0 KiB
C++
|
|
||
|
// Usage example: ./mask_rcnn.out --video=
|
||
|
// ./mask_rcnn.out --image=
|
||
|
#include <fstream>
|
||
|
#include <sstream>
|
||
|
#include <iostream>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <opencv2/dnn.hpp>
|
||
|
#include <opencv2/imgproc.hpp>
|
||
|
#include <opencv2/highgui.hpp>
|
||
|
|
||
|
const char* keys =
|
||
|
"{help h usage ? | | Usage examples: \n\t\t./mask-rcnn.out --image=traffic.jpg \n\t\t./mask-rcnn.out --video=sample.mp4}"
|
||
|
"{image i |<none>| input image }"
|
||
|
"{video v |<none>| input video }"
|
||
|
;
|
||
|
using namespace cv;
|
||
|
using namespace dnn;
|
||
|
using namespace std;
|
||
|
|
||
|
// Initialize the parameters
|
||
|
float confThreshold = 0.5; // Confidence threshold
|
||
|
float maskThreshold = 0.3; // Mask threshold
|
||
|
|
||
|
vector<string> classes;
|
||
|
vector<Scalar> colors;
|
||
|
|
||
|
// Draw the predicted bounding box
|
||
|
void drawBox(Mat& frame, int classId, float conf, Rect box, Mat& objectMask);
|
||
|
|
||
|
// Postprocess the neural network's output for each frame
|
||
|
void postprocess(Mat& frame, const vector<Mat>& outs);
|
||
|
|
||
|
int main(int argc, char** argv)
|
||
|
{
|
||
|
CommandLineParser parser(argc, argv, keys);
|
||
|
parser.about("Use this script to run object detection using YOLO3 in OpenCV.");
|
||
|
if (parser.has("help"))
|
||
|
{
|
||
|
parser.printMessage();
|
||
|
return 0;
|
||
|
}
|
||
|
// Load names of classes
|
||
|
string classesFile = "mscoco_labels.names";
|
||
|
ifstream ifs(classesFile.c_str());
|
||
|
string line;
|
||
|
while (getline(ifs, line)) classes.push_back(line);
|
||
|
|
||
|
// Load the colors
|
||
|
string colorsFile = "colors.txt";
|
||
|
ifstream colorFptr(colorsFile.c_str());
|
||
|
while (getline(colorFptr, line)) {
|
||
|
char* pEnd;
|
||
|
double r, g, b;
|
||
|
r = strtod (line.c_str(), &pEnd);
|
||
|
g = strtod (pEnd, NULL);
|
||
|
b = strtod (pEnd, NULL);
|
||
|
Scalar color = Scalar(r, g, b, 255.0);
|
||
|
colors.push_back(Scalar(r, g, b, 255.0));
|
||
|
}
|
||
|
|
||
|
// Give the configuration and weight files for the model
|
||
|
String textGraph = "./mask_rcnn_inception_v2_coco_2018_01_28.pbtxt";
|
||
|
String modelWeights = "./mask_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb";
|
||
|
|
||
|
// Load the network
|
||
|
Net net = readNetFromTensorflow(modelWeights, textGraph);
|
||
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
||
|
net.setPreferableTarget(DNN_TARGET_CPU);
|
||
|
|
||
|
// Open a video file or an image file or a camera stream.
|
||
|
string str, outputFile;
|
||
|
VideoCapture cap;
|
||
|
VideoWriter video;
|
||
|
Mat frame, blob;
|
||
|
|
||
|
try {
|
||
|
|
||
|
outputFile = "mask_rcnn_out_cpp.avi";
|
||
|
if (parser.has("image"))
|
||
|
{
|
||
|
// Open the image file
|
||
|
str = parser.get<String>("image");
|
||
|
//cout << "Image file input : " << str << endl;
|
||
|
ifstream ifile(str);
|
||
|
if (!ifile) throw("error");
|
||
|
cap.open(str);
|
||
|
str.replace(str.end()-4, str.end(), "_mask_rcnn_out.jpg");
|
||
|
outputFile = str;
|
||
|
}
|
||
|
else if (parser.has("video"))
|
||
|
{
|
||
|
// Open the video file
|
||
|
str = parser.get<String>("video");
|
||
|
ifstream ifile(str);
|
||
|
if (!ifile) throw("error");
|
||
|
cap.open(str);
|
||
|
str.replace(str.end()-4, str.end(), "_mask_rcnn_out.avi");
|
||
|
outputFile = str;
|
||
|
}
|
||
|
// Open the webcam
|
||
|
else cap.open(parser.get<int>("device"));
|
||
|
|
||
|
}
|
||
|
catch(...) {
|
||
|
cout << "Could not open the input image/video stream" << endl;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Get the video writer initialized to save the output video
|
||
|
if (!parser.has("image")) {
|
||
|
video.open(outputFile, VideoWriter::fourcc('M','J','P','G'), 28, Size(cap.get(CAP_PROP_FRAME_WIDTH), cap.get(CAP_PROP_FRAME_HEIGHT)));
|
||
|
}
|
||
|
|
||
|
// Create a window
|
||
|
static const string kWinName = "Deep learning object detection in OpenCV";
|
||
|
namedWindow(kWinName, WINDOW_NORMAL);
|
||
|
|
||
|
// Process frames.
|
||
|
while (waitKey(1) < 0)
|
||
|
{
|
||
|
// get frame from the video
|
||
|
cap >> frame;
|
||
|
|
||
|
// Stop the program if reached end of video
|
||
|
if (frame.empty()) {
|
||
|
cout << "Done processing !!!" << endl;
|
||
|
cout << "Output file is stored as " << outputFile << endl;
|
||
|
waitKey(3000);
|
||
|
break;
|
||
|
}
|
||
|
// Create a 4D blob from a frame.
|
||
|
blobFromImage(frame, blob, 1.0, Size(frame.cols, frame.rows), Scalar(), true, false);
|
||
|
//blobFromImage(frame, blob);
|
||
|
|
||
|
//Sets the input to the network
|
||
|
net.setInput(blob);
|
||
|
|
||
|
// Runs the forward pass to get output from the output layers
|
||
|
std::vector<String> outNames(2);
|
||
|
outNames[0] = "detection_out_final";
|
||
|
outNames[1] = "detection_masks";
|
||
|
vector<Mat> outs;
|
||
|
net.forward(outs, outNames);
|
||
|
|
||
|
// Extract the bounding box and mask for each of the detected objects
|
||
|
postprocess(frame, outs);
|
||
|
|
||
|
// Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
|
||
|
vector<double> layersTimes;
|
||
|
double freq = getTickFrequency() / 1000;
|
||
|
double t = net.getPerfProfile(layersTimes) / freq;
|
||
|
string label = format("Mask-RCNN on 2.5 GHz Intel Core i7 CPU, Inference time for a frame : %0.0f ms", t);
|
||
|
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));
|
||
|
|
||
|
// Write the frame with the detection boxes
|
||
|
Mat detectedFrame;
|
||
|
frame.convertTo(detectedFrame, CV_8U);
|
||
|
if (parser.has("image")) imwrite(outputFile, detectedFrame);
|
||
|
else video.write(detectedFrame);
|
||
|
|
||
|
imshow(kWinName, frame);
|
||
|
|
||
|
}
|
||
|
|
||
|
cap.release();
|
||
|
if (!parser.has("image")) video.release();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// For each frame, extract the bounding box and mask for each detected object
|
||
|
void postprocess(Mat& frame, const vector<Mat>& outs)
|
||
|
{
|
||
|
Mat outDetections = outs[0];
|
||
|
Mat outMasks = outs[1];
|
||
|
|
||
|
// Output size of masks is NxCxHxW where
|
||
|
// N - number of detected boxes
|
||
|
// C - number of classes (excluding background)
|
||
|
// HxW - segmentation shape
|
||
|
const int numDetections = outDetections.size[2];
|
||
|
const int numClasses = outMasks.size[1];
|
||
|
|
||
|
outDetections = outDetections.reshape(1, outDetections.total() / 7);
|
||
|
for (int i = 0; i < numDetections; ++i)
|
||
|
{
|
||
|
float score = outDetections.at<float>(i, 2);
|
||
|
if (score > confThreshold)
|
||
|
{
|
||
|
// Extract the bounding box
|
||
|
int classId = static_cast<int>(outDetections.at<float>(i, 1));
|
||
|
int left = static_cast<int>(frame.cols * outDetections.at<float>(i, 3));
|
||
|
int top = static_cast<int>(frame.rows * outDetections.at<float>(i, 4));
|
||
|
int right = static_cast<int>(frame.cols * outDetections.at<float>(i, 5));
|
||
|
int bottom = static_cast<int>(frame.rows * outDetections.at<float>(i, 6));
|
||
|
|
||
|
left = max(0, min(left, frame.cols - 1));
|
||
|
top = max(0, min(top, frame.rows - 1));
|
||
|
right = max(0, min(right, frame.cols - 1));
|
||
|
bottom = max(0, min(bottom, frame.rows - 1));
|
||
|
Rect box = Rect(left, top, right - left + 1, bottom - top + 1);
|
||
|
|
||
|
// Extract the mask for the object
|
||
|
Mat objectMask(outMasks.size[2], outMasks.size[3],CV_32F, outMasks.ptr<float>(i,classId));
|
||
|
|
||
|
// Draw bounding box, colorize and show the mask on the image
|
||
|
drawBox(frame, classId, score, box, objectMask);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Draw the predicted bounding box, colorize and show the mask on the image
|
||
|
void drawBox(Mat& frame, int classId, float conf, Rect box, Mat& objectMask)
|
||
|
{
|
||
|
//Draw a rectangle displaying the bounding box
|
||
|
rectangle(frame, Point(box.x, box.y), Point(box.x+box.width, box.y+box.height), Scalar(255, 178, 50), 3);
|
||
|
|
||
|
//Get the label for the class name and its confidence
|
||
|
string label = format("%.2f", conf);
|
||
|
if (!classes.empty())
|
||
|
{
|
||
|
CV_Assert(classId < (int)classes.size());
|
||
|
label = classes[classId] + ":" + label;
|
||
|
}
|
||
|
|
||
|
//Display the label at the top of the bounding box
|
||
|
int baseLine;
|
||
|
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
||
|
box.y = max(box.y, labelSize.height);
|
||
|
rectangle(frame, Point(box.x, box.y - round(1.5*labelSize.height)), Point(box.x + round(1.5*labelSize.width), box.y + baseLine), Scalar(255, 255, 255), FILLED);
|
||
|
putText(frame, label, Point(box.x, box.y), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0,0,0),1);
|
||
|
|
||
|
Scalar color = colors[classId%colors.size()];
|
||
|
|
||
|
// Resize the mask, threshold, color and apply it on the image
|
||
|
resize(objectMask, objectMask, Size(box.width, box.height));
|
||
|
Mat mask = (objectMask > maskThreshold);
|
||
|
Mat coloredRoi = (0.3 * color + 0.7 * frame(box));
|
||
|
coloredRoi.convertTo(coloredRoi, CV_8UC3);
|
||
|
|
||
|
// Draw the contours on the image
|
||
|
vector<Mat> contours;
|
||
|
Mat hierarchy;
|
||
|
mask.convertTo(mask, CV_8U);
|
||
|
findContours(mask, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
|
||
|
drawContours(coloredRoi, contours, -1, color, 5, LINE_8, hierarchy, 100);
|
||
|
coloredRoi.copyTo(frame(box), mask);
|
||
|
|
||
|
}
|
||
|
|