Usuń 'mask/mask_rcnn.py'
This commit is contained in:
parent
40ca7a235e
commit
b913f0e69f
@ -1,170 +0,0 @@
|
|||||||
import cv2 as cv
|
|
||||||
import argparse
|
|
||||||
import numpy as np
|
|
||||||
import os.path
|
|
||||||
import sys
|
|
||||||
import random
|
|
||||||
|
|
||||||
# Inicjalizacja parametrów
|
|
||||||
confThreshold = 0.5
|
|
||||||
maskThreshold = 0.3
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
# Rysuje obrawmowanie zwierzęcia, koloruje i zaznacza maską
|
|
||||||
def drawBox(frame, classId, conf, left, top, right, bottom, classMask):
|
|
||||||
# obramowanie.
|
|
||||||
cv.rectangle(frame, (left, top), (right, bottom), (255, 178, 50), 3)
|
|
||||||
|
|
||||||
# etykieta obiektu
|
|
||||||
label = '%.2f' % conf
|
|
||||||
if classes:
|
|
||||||
assert(classId < len(classes))
|
|
||||||
label = '%s:%s' % (classes[classId], label)
|
|
||||||
|
|
||||||
# wyświetla etykietę
|
|
||||||
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
|
||||||
top = max(top, labelSize[1])
|
|
||||||
cv.rectangle(frame, (left, top - round(1.5*labelSize[1])), (left + round(1.5*labelSize[0]), top + baseLine), (255, 255, 255), cv.FILLED)
|
|
||||||
cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0,0,0), 1)
|
|
||||||
|
|
||||||
# zmiana rozmiaru maski i nałożenie na obiekt
|
|
||||||
classMask = cv.resize(classMask, (right - left + 1, bottom - top + 1))
|
|
||||||
mask = (classMask > maskThreshold)
|
|
||||||
roi = frame[top:bottom+1, left:right+1][mask]
|
|
||||||
|
|
||||||
colorIndex = random.randint(0, len(colors)-1)
|
|
||||||
color = colors[colorIndex]
|
|
||||||
|
|
||||||
frame[top:bottom+1, left:right+1][mask] = ([0.3*color[0], 0.3*color[1], 0.3*color[2]] + 0.7 * roi).astype(np.uint8)
|
|
||||||
|
|
||||||
# rysuje kontury na obrazie
|
|
||||||
mask = mask.astype(np.uint8)
|
|
||||||
im2, contours, hierarchy = cv.findContours(mask,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
|
|
||||||
cv.drawContours(frame[top:bottom+1, left:right+1], contours, -1, color, 3, cv.LINE_8, hierarchy, 100)
|
|
||||||
|
|
||||||
# dla każdej ramki maskuje obraz
|
|
||||||
def postprocess(boxes, masks):
|
|
||||||
# N - liczba znalezionych obramowań
|
|
||||||
# C - liczba klas
|
|
||||||
# H,W- wysokość i szerokość
|
|
||||||
numClasses = masks.shape[1]
|
|
||||||
numDetections = boxes.shape[2]
|
|
||||||
|
|
||||||
frameH = frame.shape[0]
|
|
||||||
frameW = frame.shape[1]
|
|
||||||
|
|
||||||
for i in range(numDetections):
|
|
||||||
box = boxes[0, 0, i]
|
|
||||||
mask = masks[i]
|
|
||||||
score = box[2]
|
|
||||||
if score > confThreshold:
|
|
||||||
classId = int(box[1])
|
|
||||||
|
|
||||||
# zaznacza ramkę
|
|
||||||
left = int(frameW * box[3])
|
|
||||||
top = int(frameH * box[4])
|
|
||||||
right = int(frameW * box[5])
|
|
||||||
bottom = int(frameH * box[6])
|
|
||||||
|
|
||||||
left = max(0, min(left, frameW - 1))
|
|
||||||
top = max(0, min(top, frameH - 1))
|
|
||||||
right = max(0, min(right, frameW - 1))
|
|
||||||
bottom = max(0, min(bottom, frameH - 1))
|
|
||||||
|
|
||||||
# aktywacja maski
|
|
||||||
classMask = mask[classId]
|
|
||||||
|
|
||||||
# rysuje wszystko na obrazie
|
|
||||||
drawBox(frame, classId, score, left, top, right, bottom, classMask)
|
|
||||||
|
|
||||||
|
|
||||||
# załaduj nazwy
|
|
||||||
classesFile = "mscoco_labels.names";
|
|
||||||
classes = None
|
|
||||||
with open(classesFile, 'rt') as f:
|
|
||||||
classes = f.read().rstrip('\n').split('\n')
|
|
||||||
|
|
||||||
# Give the textGraph and weight files for the model
|
|
||||||
textGraph = "./mask.pbtxt";
|
|
||||||
modelWeights = "./mask/frozen_inference_graph.pb";
|
|
||||||
|
|
||||||
# Load the network
|
|
||||||
net = cv.dnn.readNetFromTensorflow(modelWeights, textGraph);
|
|
||||||
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
|
|
||||||
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
|
|
||||||
|
|
||||||
# Load the classes
|
|
||||||
colorsFile = "colors.txt";
|
|
||||||
with open(colorsFile, 'rt') as f:
|
|
||||||
colorsStr = f.read().rstrip('\n').split('\n')
|
|
||||||
colors = [] #[0,0,0]
|
|
||||||
for i in range(len(colorsStr)):
|
|
||||||
rgb = colorsStr[i].split(' ')
|
|
||||||
color = np.array([float(rgb[0]), float(rgb[1]), float(rgb[2])])
|
|
||||||
colors.append(color)
|
|
||||||
|
|
||||||
winName = 'Mask-RCNN Object detection and Segmentation in OpenCV'
|
|
||||||
cv.namedWindow(winName, cv.WINDOW_NORMAL)
|
|
||||||
|
|
||||||
outputFile = "mask_rcnn_out_py.avi"
|
|
||||||
if (args.image):
|
|
||||||
# Open the image file
|
|
||||||
if not os.path.isfile(args.image):
|
|
||||||
print("Input image file ", args.image, " doesn't exist")
|
|
||||||
sys.exit(1)
|
|
||||||
cap = cv.VideoCapture(args.image)
|
|
||||||
outputFile = args.image[:-4]+'_mask_rcnn_out_py.jpg'
|
|
||||||
elif (args.video):
|
|
||||||
# Open the video file
|
|
||||||
if not os.path.isfile(args.video):
|
|
||||||
print("Input video file ", args.video, " doesn't exist")
|
|
||||||
sys.exit(1)
|
|
||||||
cap = cv.VideoCapture(args.video)
|
|
||||||
outputFile = args.video[:-4]+'_mask_rcnn_out_py.avi'
|
|
||||||
else:
|
|
||||||
# Webcam input
|
|
||||||
cap = cv.VideoCapture(0)
|
|
||||||
|
|
||||||
# Get the video writer initialized to save the output video
|
|
||||||
if (not args.image):
|
|
||||||
vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M','J','P','G'), 28, (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)),round(cap.get(cv.CAP_PROP_FRAME_HEIGHT))))
|
|
||||||
|
|
||||||
while cv.waitKey(1) < 0:
|
|
||||||
|
|
||||||
# Get frame from the video
|
|
||||||
hasFrame, frame = cap.read()
|
|
||||||
|
|
||||||
# Stop the program if reached end of video
|
|
||||||
if not hasFrame:
|
|
||||||
print("Done processing !!!")
|
|
||||||
print("Output file is stored as ", outputFile)
|
|
||||||
cv.waitKey(3000)
|
|
||||||
break
|
|
||||||
|
|
||||||
# Create a 4D blob from a frame.
|
|
||||||
blob = cv.dnn.blobFromImage(frame, swapRB=True, crop=False)
|
|
||||||
|
|
||||||
# Set the input to the network
|
|
||||||
net.setInput(blob)
|
|
||||||
|
|
||||||
# Run the forward pass to get output from the output layers
|
|
||||||
boxes, masks = net.forward(['detection_out_final', 'detection_masks'])
|
|
||||||
|
|
||||||
# Extract the bounding box and mask for each of the detected objects
|
|
||||||
postprocess(boxes, masks)
|
|
||||||
|
|
||||||
# Put efficiency information.
|
|
||||||
t, _ = net.getPerfProfile()
|
|
||||||
label = 'Mask-RCNN on 2.5 GHz Intel Core i7 CPU, Inference time for a frame : %0.0f ms' % abs(t * 1000.0 / cv.getTickFrequency())
|
|
||||||
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
|
|
||||||
|
|
||||||
# Write the frame with the detection boxes
|
|
||||||
if (args.image):
|
|
||||||
cv.imwrite(outputFile, frame.astype(np.uint8));
|
|
||||||
else:
|
|
||||||
vid_writer.write(frame.astype(np.uint8))
|
|
||||||
|
|
||||||
cv.imshow(winName, frame)
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user