This commit is contained in:
Mikolaj 2019-12-22 21:51:47 +01:00
parent 2d69ece87a
commit 25aaa8c2d5
5507 changed files with 1747270 additions and 2 deletions

View File

@ -2,7 +2,7 @@
<html>
<head>
<meta charset="utf-8">
<link rel="Stylesheet" href="style.css">
<link rel="Stylesheet" href="style/style.css">
</head>
<body>
@ -14,6 +14,7 @@
$wynik = $conn->query("SELECT * FROM parametry WHERE Id = 1 ");
echo "<h1>Dane twojego komputera: </h1>";
echo "<br>";
if($wynik->num_rows > 0){
@ -27,6 +28,8 @@
echo "<th>Karta_Graficzna</th>";
echo "</tr>";
while( $wiersz = $wynik->fetch_assoc() ){
echo "<tr>";
@ -38,14 +41,74 @@
echo "<td>" . $wiersz["Karta_Graficzna"] . "</td>";
echo "</tr>";
}
echo "</table>";
echo "<br>";
}
else {
echo "Nie ma nic w bazie danych";
}
$wynik = $conn->query("SELECT * FROM uzytkownicy WHERE Id = 1 ");
echo "<h1>Informacje o uzytkowniku: </h1>";
if($wynik->num_rows > 0){
echo "<table>";
echo "<tr>";
echo "<th>Id</th>";
echo "<th>Imie</th>";
echo "<th>Nazwisko</th>";
echo "<th>Data wydania</th>";
echo "<th>Data zakonczenia leasingu</th>";
echo "<th>Dzial</th>";
echo "</tr>";
while( $wiersz = $wynik->fetch_assoc() ){
echo "<tr>";
echo "<td>" . $wiersz["Id"] . "</td>";
echo "<td>" . $wiersz["Imie"] . "</td>";
echo "<td>" . $wiersz["Nazwisko"] . "</td>";
echo "<td>" . $wiersz["Data_wydania"] . "</td>";
echo "<td>" . $wiersz["Data_zak_lea"] . "</td>";
echo "<td>" . $wiersz["Dzial"] . "</td>";
echo "</tr>";
}
echo "</table>";
}else {
}
else {
echo "Nie ma nic w bazie danych";
}
$conn->close();
?>

114
index1.php Normal file
View File

@ -0,0 +1,114 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<link rel="Stylesheet" href="style/style.css">
</head>
<body>
<?php
$conn = new mysqli("localhost", "root", "", "komputery") or die("Błąd");
$wynik = $conn->query("SELECT * FROM parametry WHERE Id = 2 ");
echo "<h1>Dane twojego komputera: </h1>";
echo "<br>";
if($wynik->num_rows > 0){
echo "<table>";
echo "<tr>";
echo "<th>Id</th>";
echo "<th>Procesor</th>";
echo "<th>Plyta_Glowna</th>";
echo "<th>Pamiec_Ram</th>";
echo "<th>Dysk</th>";
echo "<th>Karta_Graficzna</th>";
echo "</tr>";
while( $wiersz = $wynik->fetch_assoc() ){
echo "<tr>";
echo "<td>" . $wiersz["Id"] . "</td>";
echo "<td>" . $wiersz["Procesor"] . "</td>";
echo "<td>" . $wiersz["Plyta_Glowna"] . "</td>";
echo "<td>" . $wiersz["Pamiec_Ram"] . "</td>";
echo "<td>" . $wiersz["Dysk"] . "</td>";
echo "<td>" . $wiersz["Karta_Graficzna"] . "</td>";
echo "</tr>";
}
echo "</table>";
echo "<br>";
}
else {
echo "Nie ma nic w bazie danych";
}
$wynik = $conn->query("SELECT * FROM uzytkownicy WHERE Id = 2 ");
echo "<h1>Informacje o uzytkowniku: </h1>";
if($wynik->num_rows > 0){
echo "<table>";
echo "<tr>";
echo "<th>Id</th>";
echo "<th>Imie</th>";
echo "<th>Nazwisko</th>";
echo "<th>Data wydania</th>";
echo "<th>Data zakonczenia leasingu</th>";
echo "<th>Dzial</th>";
echo "</tr>";
while( $wiersz = $wynik->fetch_assoc() ){
echo "<tr>";
echo "<td>" . $wiersz["Id"] . "</td>";
echo "<td>" . $wiersz["Imie"] . "</td>";
echo "<td>" . $wiersz["Nazwisko"] . "</td>";
echo "<td>" . $wiersz["Data_wydania"] . "</td>";
echo "<td>" . $wiersz["Data_zak_lea"] . "</td>";
echo "<td>" . $wiersz["Dzial"] . "</td>";
echo "</tr>";
}
echo "</table>";
}
else {
echo "Nie ma nic w bazie danych";
}
$conn->close();
?>

96
komputery.sql Normal file
View File

@ -0,0 +1,96 @@
-- phpMyAdmin SQL Dump
-- version 4.6.5.2
-- https://www.phpmyadmin.net/
--
-- Host: 127.0.0.1
-- Czas generowania: 22 Gru 2019, 20:58
-- Wersja serwera: 10.1.21-MariaDB
-- Wersja PHP: 5.6.30
SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";
SET time_zone = "+00:00";
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;
--
-- Baza danych: `komputery`
--
-- --------------------------------------------------------
--
-- Struktura tabeli dla tabeli `parametry`
--
CREATE TABLE `parametry` (
`Id` int(255) NOT NULL,
`Procesor` varchar(255) COLLATE utf8mb4_polish_ci NOT NULL,
`Plyta_Glowna` varchar(255) COLLATE utf8mb4_polish_ci NOT NULL,
`Pamiec_Ram` varchar(255) COLLATE utf8mb4_polish_ci NOT NULL,
`Dysk` varchar(255) COLLATE utf8mb4_polish_ci NOT NULL,
`Karta_Graficzna` varchar(255) COLLATE utf8mb4_polish_ci NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_polish_ci;
--
-- Zrzut danych tabeli `parametry`
--
INSERT INTO `parametry` (`Id`, `Procesor`, `Plyta_Glowna`, `Pamiec_Ram`, `Dysk`, `Karta_Graficzna`) VALUES
(1, 'Intel', 'Asus', '4GB', 'SSD', 'Asus'),
(2, 'Ryzen', 'Asus', '8GB', 'HDD', 'Asus');
-- --------------------------------------------------------
--
-- Struktura tabeli dla tabeli `uzytkownicy`
--
CREATE TABLE `uzytkownicy` (
`Id` int(255) NOT NULL,
`Imie` varchar(255) COLLATE utf8mb4_polish_ci NOT NULL,
`Nazwisko` varchar(255) COLLATE utf8mb4_polish_ci NOT NULL,
`Data_wydania` date NOT NULL,
`Data_zak_lea` date NOT NULL,
`Dzial` varchar(255) COLLATE utf8mb4_polish_ci NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_polish_ci;
--
-- Zrzut danych tabeli `uzytkownicy`
--
INSERT INTO `uzytkownicy` (`Id`, `Imie`, `Nazwisko`, `Data_wydania`, `Data_zak_lea`, `Dzial`) VALUES
(1, 'Jan', 'Kowalski', '2019-11-17', '2020-11-20', 'Technologie'),
(2, 'Monika', 'Szyk', '2018-12-02', '2020-12-01', 'Zarzad');
--
-- Indeksy dla zrzutów tabel
--
--
-- Indexes for table `parametry`
--
ALTER TABLE `parametry`
ADD PRIMARY KEY (`Id`);
--
-- Indexes for table `uzytkownicy`
--
ALTER TABLE `uzytkownicy`
ADD PRIMARY KEY (`Id`);
--
-- AUTO_INCREMENT for dumped tables
--
--
-- AUTO_INCREMENT dla tabeli `uzytkownicy`
--
ALTER TABLE `uzytkownicy`
MODIFY `Id` int(255) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=3;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

BIN
pc1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 422 B

BIN
pc2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 422 B

29
scan_webcam.py Normal file
View File

@ -0,0 +1,29 @@
import cv2
import numpy as np
import pyzbar.pyzbar as pyzbar
import webbrowser
cap = cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_PLAIN
while True:
_, frame = cap.read()
decodedObjects = pyzbar.decode(frame)
for obj in decodedObjects:
#print("Data", obj.data)
cv2.putText(frame, str(obj.data), (50, 50), font, 2, # POKAŻ NA EKRAN NAPIS Z LINKU KODU QR
(255, 0, 0), 3)
webbrowser.open(obj.data, new=2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1)
if key == 27:
break

20
style/style.css Normal file
View File

@ -0,0 +1,20 @@
body {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 10pt;
color: black;
background-color: #80B8E8;
margin: 6mm;
}
p {
text-align: justify;
}
pre, code {
font-size: 8pt;
}
td {
border: solid #000 1px;
padding: 5px;
border-spacing: 25mm;
}

View File

@ -0,0 +1,250 @@
# -*- coding: utf-8 -*-
#
# Cipher/AES.py : AES
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""
Module's constants for the modes of operation supported with AES:
:var MODE_ECB: :ref:`Electronic Code Book (ECB) <ecb_mode>`
:var MODE_CBC: :ref:`Cipher-Block Chaining (CBC) <cbc_mode>`
:var MODE_CFB: :ref:`Cipher FeedBack (CFB) <cfb_mode>`
:var MODE_OFB: :ref:`Output FeedBack (OFB) <ofb_mode>`
:var MODE_CTR: :ref:`CounTer Mode (CTR) <ctr_mode>`
:var MODE_OPENPGP: :ref:`OpenPGP Mode <openpgp_mode>`
:var MODE_CCM: :ref:`Counter with CBC-MAC (CCM) Mode <ccm_mode>`
:var MODE_EAX: :ref:`EAX Mode <eax_mode>`
:var MODE_GCM: :ref:`Galois Counter Mode (GCM) <gcm_mode>`
:var MODE_SIV: :ref:`Syntethic Initialization Vector (SIV) <siv_mode>`
:var MODE_OCB: :ref:`Offset Code Book (OCB) <ocb_mode>`
"""
import sys
from Crypto.Cipher import _create_cipher
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
VoidPointer, SmartPointer,
c_size_t, c_uint8_ptr)
from Crypto.Util import _cpu_features
from Crypto.Random import get_random_bytes
_cproto = """
int AES_start_operation(const uint8_t key[],
size_t key_len,
void **pResult);
int AES_encrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int AES_decrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int AES_stop_operation(void *state);
"""
# Load portable AES
_raw_aes_lib = load_pycryptodome_raw_lib("Crypto.Cipher._raw_aes",
_cproto)
# Try to load AES with AES NI instructions
try:
_raw_aesni_lib = None
if _cpu_features.have_aes_ni():
_raw_aesni_lib = load_pycryptodome_raw_lib("Crypto.Cipher._raw_aesni",
_cproto.replace("AES",
"AESNI"))
# _raw_aesni may not have been compiled in
except OSError:
pass
def _create_base_cipher(dict_parameters):
"""This method instantiates and returns a handle to a low-level
base cipher. It will absorb named parameters in the process."""
use_aesni = dict_parameters.pop("use_aesni", True)
try:
key = dict_parameters.pop("key")
except KeyError:
raise TypeError("Missing 'key' parameter")
if len(key) not in key_size:
raise ValueError("Incorrect AES key length (%d bytes)" % len(key))
if use_aesni and _raw_aesni_lib:
start_operation = _raw_aesni_lib.AESNI_start_operation
stop_operation = _raw_aesni_lib.AESNI_stop_operation
else:
start_operation = _raw_aes_lib.AES_start_operation
stop_operation = _raw_aes_lib.AES_stop_operation
cipher = VoidPointer()
result = start_operation(c_uint8_ptr(key),
c_size_t(len(key)),
cipher.address_of())
if result:
raise ValueError("Error %X while instantiating the AES cipher"
% result)
return SmartPointer(cipher.get(), stop_operation)
def _derive_Poly1305_key_pair(key, nonce):
"""Derive a tuple (r, s, nonce) for a Poly1305 MAC.
If nonce is ``None``, a new 16-byte nonce is generated.
"""
if len(key) != 32:
raise ValueError("Poly1305 with AES requires a 32-byte key")
if nonce is None:
nonce = get_random_bytes(16)
elif len(nonce) != 16:
raise ValueError("Poly1305 with AES requires a 16-byte nonce")
s = new(key[:16], MODE_ECB).encrypt(nonce)
return key[16:], s, nonce
def new(key, mode, *args, **kwargs):
"""Create a new AES cipher.
:param key:
The secret key to use in the symmetric cipher.
It must be 16, 24 or 32 bytes long (respectively for *AES-128*,
*AES-192* or *AES-256*).
For ``MODE_SIV`` only, it doubles to 32, 48, or 64 bytes.
:type key: bytes/bytearray/memoryview
:param mode:
The chaining mode to use for encryption or decryption.
If in doubt, use ``MODE_EAX``.
:type mode: One of the supported ``MODE_*`` constants
:Keyword Arguments:
* **iv** (*bytes*, *bytearray*, *memoryview*) --
(Only applicable for ``MODE_CBC``, ``MODE_CFB``, ``MODE_OFB``,
and ``MODE_OPENPGP`` modes).
The initialization vector to use for encryption or decryption.
For ``MODE_CBC``, ``MODE_CFB``, and ``MODE_OFB`` it must be 16 bytes long.
For ``MODE_OPENPGP`` mode only,
it must be 16 bytes long for encryption
and 18 bytes for decryption (in the latter case, it is
actually the *encrypted* IV which was prefixed to the ciphertext).
If not provided, a random byte string is generated (you must then
read its value with the :attr:`iv` attribute).
* **nonce** (*bytes*, *bytearray*, *memoryview*) --
(Only applicable for ``MODE_CCM``, ``MODE_EAX``, ``MODE_GCM``,
``MODE_SIV``, ``MODE_OCB``, and ``MODE_CTR``).
A value that must never be reused for any other encryption done
with this key (except possibly for ``MODE_SIV``, see below).
For ``MODE_EAX``, ``MODE_GCM`` and ``MODE_SIV`` there are no
restrictions on its length (recommended: **16** bytes).
For ``MODE_CCM``, its length must be in the range **[7..13]**.
Bear in mind that with CCM there is a trade-off between nonce
length and maximum message size. Recommendation: **11** bytes.
For ``MODE_OCB``, its length must be in the range **[1..15]**
(recommended: **15**).
For ``MODE_CTR``, its length must be in the range **[0..15]**
(recommended: **8**).
For ``MODE_SIV``, the nonce is optional, if it is not specified,
then no nonce is being used, which renders the encryption
deterministic.
If not provided, for modes other than ``MODE_SIV```, a random
byte string of the recommended length is used (you must then
read its value with the :attr:`nonce` attribute).
* **segment_size** (*integer*) --
(Only ``MODE_CFB``).The number of **bits** the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.
* **mac_len** : (*integer*) --
(Only ``MODE_EAX``, ``MODE_GCM``, ``MODE_OCB``, ``MODE_CCM``)
Length of the authentication tag, in bytes.
It must be even and in the range **[4..16]**.
The recommended value (and the default, if not specified) is **16**.
* **msg_len** : (*integer*) --
(Only ``MODE_CCM``). Length of the message to (de)cipher.
If not specified, ``encrypt`` must be called with the entire message.
Similarly, ``decrypt`` can only be called once.
* **assoc_len** : (*integer*) --
(Only ``MODE_CCM``). Length of the associated data.
If not specified, all associated data is buffered internally,
which may represent a problem for very large messages.
* **initial_value** : (*integer* or *bytes/bytearray/memoryview*) --
(Only ``MODE_CTR``).
The initial value for the counter. If not present, the cipher will
start counting from 0. The value is incremented by one for each block.
The counter number is encoded in big endian mode.
* **counter** : (*object*) --
Instance of ``Crypto.Util.Counter``, which allows full customization
of the counter block. This parameter is incompatible to both ``nonce``
and ``initial_value``.
* **use_aesni** : (*boolean*) --
Use Intel AES-NI hardware extensions (default: use if available).
:Return: an AES object, of the applicable mode.
"""
kwargs["add_aes_modes"] = True
return _create_cipher(sys.modules[__name__], key, mode, *args, **kwargs)
MODE_ECB = 1
MODE_CBC = 2
MODE_CFB = 3
MODE_OFB = 5
MODE_CTR = 6
MODE_OPENPGP = 7
MODE_CCM = 8
MODE_EAX = 9
MODE_SIV = 10
MODE_GCM = 11
MODE_OCB = 12
# Size of a data block (in bytes)
block_size = 16
# Size of a key (in bytes)
key_size = (16, 24, 32)

View File

@ -0,0 +1,47 @@
from typing import Union, Tuple, Optional, Dict
from Crypto.Cipher._mode_ecb import EcbMode
from Crypto.Cipher._mode_cbc import CbcMode
from Crypto.Cipher._mode_cfb import CfbMode
from Crypto.Cipher._mode_ofb import OfbMode
from Crypto.Cipher._mode_ctr import CtrMode
from Crypto.Cipher._mode_openpgp import OpenPgpMode
from Crypto.Cipher._mode_ccm import CcmMode
from Crypto.Cipher._mode_eax import EaxMode
from Crypto.Cipher._mode_gcm import GcmMode
from Crypto.Cipher._mode_siv import SivMode
from Crypto.Cipher._mode_ocb import OcbMode
AESMode = int
MODE_ECB: AESMode
MODE_CBC: AESMode
MODE_CFB: AESMode
MODE_OFB: AESMode
MODE_CTR: AESMode
MODE_OPENPGP: AESMode
MODE_CCM: AESMode
MODE_EAX: AESMode
MODE_GCM: AESMode
MODE_SIV: AESMode
MODE_OCB: AESMode
Buffer = Union[bytes, bytearray, memoryview]
def new(key: Buffer,
mode: AESMode,
iv : Buffer = ...,
IV : Buffer = ...,
nonce : Buffer = ...,
segment_size : int = ...,
mac_len : int = ...,
assoc_len : int = ...,
initial_value : Union[int, Buffer] = ...,
counter : Dict = ...,
use_aesni : bool = ...) -> \
Union[EcbMode, CbcMode, CfbMode, OfbMode, CtrMode,
OpenPgpMode, CcmMode, EaxMode, GcmMode,
SivMode, OcbMode]: ...
block_size: int
key_size: Tuple[int, int, int]

View File

@ -0,0 +1,168 @@
# -*- coding: utf-8 -*-
#
# Cipher/ARC2.py : ARC2.py
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""
Module's constants for the modes of operation supported with ARC2:
:var MODE_ECB: :ref:`Electronic Code Book (ECB) <ecb_mode>`
:var MODE_CBC: :ref:`Cipher-Block Chaining (CBC) <cbc_mode>`
:var MODE_CFB: :ref:`Cipher FeedBack (CFB) <cfb_mode>`
:var MODE_OFB: :ref:`Output FeedBack (OFB) <ofb_mode>`
:var MODE_CTR: :ref:`CounTer Mode (CTR) <ctr_mode>`
:var MODE_OPENPGP: :ref:`OpenPGP Mode <openpgp_mode>`
:var MODE_EAX: :ref:`EAX Mode <eax_mode>`
"""
import sys
from Crypto.Cipher import _create_cipher
from Crypto.Util.py3compat import byte_string
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
VoidPointer, SmartPointer,
c_size_t, c_uint8_ptr)
_raw_arc2_lib = load_pycryptodome_raw_lib(
"Crypto.Cipher._raw_arc2",
"""
int ARC2_start_operation(const uint8_t key[],
size_t key_len,
size_t effective_key_len,
void **pResult);
int ARC2_encrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int ARC2_decrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int ARC2_stop_operation(void *state);
"""
)
def _create_base_cipher(dict_parameters):
"""This method instantiates and returns a handle to a low-level
base cipher. It will absorb named parameters in the process."""
try:
key = dict_parameters.pop("key")
except KeyError:
raise TypeError("Missing 'key' parameter")
effective_keylen = dict_parameters.pop("effective_keylen", 1024)
if len(key) not in key_size:
raise ValueError("Incorrect ARC2 key length (%d bytes)" % len(key))
if not (40 <= effective_keylen <= 1024):
raise ValueError("'effective_key_len' must be at least 40 and no larger than 1024 "
"(not %d)" % effective_keylen)
start_operation = _raw_arc2_lib.ARC2_start_operation
stop_operation = _raw_arc2_lib.ARC2_stop_operation
cipher = VoidPointer()
result = start_operation(c_uint8_ptr(key),
c_size_t(len(key)),
c_size_t(effective_keylen),
cipher.address_of())
if result:
raise ValueError("Error %X while instantiating the ARC2 cipher"
% result)
return SmartPointer(cipher.get(), stop_operation)
def new(key, mode, *args, **kwargs):
"""Create a new RC2 cipher.
:param key:
The secret key to use in the symmetric cipher.
Its length can vary from 5 to 128 bytes.
:type key: bytes, bytearray, memoryview
:param mode:
The chaining mode to use for encryption or decryption.
:type mode: One of the supported ``MODE_*`` constants
:Keyword Arguments:
* **iv** (*bytes*, *bytearray*, *memoryview*) --
(Only applicable for ``MODE_CBC``, ``MODE_CFB``, ``MODE_OFB``,
and ``MODE_OPENPGP`` modes).
The initialization vector to use for encryption or decryption.
For ``MODE_CBC``, ``MODE_CFB``, and ``MODE_OFB`` it must be 8 bytes long.
For ``MODE_OPENPGP`` mode only,
it must be 8 bytes long for encryption
and 10 bytes for decryption (in the latter case, it is
actually the *encrypted* IV which was prefixed to the ciphertext).
If not provided, a random byte string is generated (you must then
read its value with the :attr:`iv` attribute).
* **nonce** (*bytes*, *bytearray*, *memoryview*) --
(Only applicable for ``MODE_EAX`` and ``MODE_CTR``).
A value that must never be reused for any other encryption done
with this key.
For ``MODE_EAX`` there are no
restrictions on its length (recommended: **16** bytes).
For ``MODE_CTR``, its length must be in the range **[0..7]**.
If not provided for ``MODE_EAX``, a random byte string is generated (you
can read it back via the ``nonce`` attribute).
* **segment_size** (*integer*) --
(Only ``MODE_CFB``).The number of **bits** the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.
* **mac_len** : (*integer*) --
(Only ``MODE_EAX``)
Length of the authentication tag, in bytes.
It must be no longer than 8 (default).
* **initial_value** : (*integer*) --
(Only ``MODE_CTR``). The initial value for the counter within
the counter block. By default it is **0**.
:Return: an ARC2 object, of the applicable mode.
"""
return _create_cipher(sys.modules[__name__], key, mode, *args, **kwargs)
MODE_ECB = 1
MODE_CBC = 2
MODE_CFB = 3
MODE_OFB = 5
MODE_CTR = 6
MODE_OPENPGP = 7
MODE_EAX = 9
# Size of a data block (in bytes)
block_size = 8
# Size of a key (in bytes)
key_size = range(5, 128 + 1)

View File

@ -0,0 +1,35 @@
from typing import Union, Dict, Iterable
from Crypto.Cipher._mode_ecb import EcbMode
from Crypto.Cipher._mode_cbc import CbcMode
from Crypto.Cipher._mode_cfb import CfbMode
from Crypto.Cipher._mode_ofb import OfbMode
from Crypto.Cipher._mode_ctr import CtrMode
from Crypto.Cipher._mode_openpgp import OpenPgpMode
from Crypto.Cipher._mode_eax import EaxMode
ARC2Mode = int
MODE_ECB: ARC2Mode
MODE_CBC: ARC2Mode
MODE_CFB: ARC2Mode
MODE_OFB: ARC2Mode
MODE_CTR: ARC2Mode
MODE_OPENPGP: ARC2Mode
MODE_EAX: ARC2Mode
Buffer = Union[bytes, bytearray, memoryview]
def new(key: Buffer,
mode: ARC2Mode,
iv : Buffer = ...,
IV : Buffer = ...,
nonce : Buffer = ...,
segment_size : int = ...,
mac_len : int = ...,
initial_value : Union[int, Buffer] = ...,
counter : Dict = ...) -> \
Union[EcbMode, CbcMode, CfbMode, OfbMode, CtrMode, OpenPgpMode]: ...
block_size: int
key_size: Iterable[int]

View File

@ -0,0 +1,137 @@
# -*- coding: utf-8 -*-
#
# Cipher/ARC4.py : ARC4
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
from Crypto.Util.py3compat import b
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer,
create_string_buffer, get_raw_buffer,
SmartPointer, c_size_t, c_uint8_ptr)
_raw_arc4_lib = load_pycryptodome_raw_lib("Crypto.Cipher._ARC4", """
int ARC4_stream_encrypt(void *rc4State, const uint8_t in[],
uint8_t out[], size_t len);
int ARC4_stream_init(uint8_t *key, size_t keylen,
void **pRc4State);
int ARC4_stream_destroy(void *rc4State);
""")
class ARC4Cipher:
"""ARC4 cipher object. Do not create it directly. Use
:func:`Crypto.Cipher.ARC4.new` instead.
"""
def __init__(self, key, *args, **kwargs):
"""Initialize an ARC4 cipher object
See also `new()` at the module level."""
if len(args) > 0:
ndrop = args[0]
args = args[1:]
else:
ndrop = kwargs.pop('drop', 0)
if len(key) not in key_size:
raise ValueError("Incorrect ARC4 key length (%d bytes)" %
len(key))
self._state = VoidPointer()
result = _raw_arc4_lib.ARC4_stream_init(c_uint8_ptr(key),
c_size_t(len(key)),
self._state.address_of())
if result != 0:
raise ValueError("Error %d while creating the ARC4 cipher"
% result)
self._state = SmartPointer(self._state.get(),
_raw_arc4_lib.ARC4_stream_destroy)
if ndrop > 0:
# This is OK even if the cipher is used for decryption,
# since encrypt and decrypt are actually the same thing
# with ARC4.
self.encrypt(b'\x00' * ndrop)
self.block_size = 1
self.key_size = len(key)
def encrypt(self, plaintext):
"""Encrypt a piece of data.
:param plaintext: The data to encrypt, of any size.
:type plaintext: bytes, bytearray, memoryview
:returns: the encrypted byte string, of equal length as the
plaintext.
"""
ciphertext = create_string_buffer(len(plaintext))
result = _raw_arc4_lib.ARC4_stream_encrypt(self._state.get(),
c_uint8_ptr(plaintext),
ciphertext,
c_size_t(len(plaintext)))
if result:
raise ValueError("Error %d while encrypting with RC4" % result)
return get_raw_buffer(ciphertext)
def decrypt(self, ciphertext):
"""Decrypt a piece of data.
:param ciphertext: The data to decrypt, of any size.
:type ciphertext: bytes, bytearray, memoryview
:returns: the decrypted byte string, of equal length as the
ciphertext.
"""
try:
return self.encrypt(ciphertext)
except ValueError as e:
raise ValueError(str(e).replace("enc", "dec"))
def new(key, *args, **kwargs):
"""Create a new ARC4 cipher.
:param key:
The secret key to use in the symmetric cipher.
Its length must be in the range ``[5..256]``.
The recommended length is 16 bytes.
:type key: bytes, bytearray, memoryview
:Keyword Arguments:
* *drop* (``integer``) --
The amount of bytes to discard from the initial part of the keystream.
In fact, such part has been found to be distinguishable from random
data (while it shouldn't) and also correlated to key.
The recommended value is 3072_ bytes. The default value is 0.
:Return: an `ARC4Cipher` object
.. _3072: http://eprint.iacr.org/2002/067.pdf
"""
return ARC4Cipher(key, *args, **kwargs)
# Size of a data block (in bytes)
block_size = 1
# Size of a key (in bytes)
key_size = range(5, 256+1)

View File

@ -0,0 +1,16 @@
from typing import Any, Union, Iterable
Buffer = Union[bytes, bytearray, memoryview]
class ARC4Cipher:
block_size: int
key_size: int
def __init__(self, key: Buffer, *args: Any, **kwargs: Any) -> None: ...
def encrypt(self, plaintext: Buffer) -> bytes: ...
def decrypt(self, ciphertext: Buffer) -> bytes: ...
def new(key: Buffer, drop : int = ...) -> ARC4Cipher: ...
block_size: int
key_size: Iterable[int]

View File

@ -0,0 +1,159 @@
# -*- coding: utf-8 -*-
#
# Cipher/Blowfish.py : Blowfish
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""
Module's constants for the modes of operation supported with Blowfish:
:var MODE_ECB: :ref:`Electronic Code Book (ECB) <ecb_mode>`
:var MODE_CBC: :ref:`Cipher-Block Chaining (CBC) <cbc_mode>`
:var MODE_CFB: :ref:`Cipher FeedBack (CFB) <cfb_mode>`
:var MODE_OFB: :ref:`Output FeedBack (OFB) <ofb_mode>`
:var MODE_CTR: :ref:`CounTer Mode (CTR) <ctr_mode>`
:var MODE_OPENPGP: :ref:`OpenPGP Mode <openpgp_mode>`
:var MODE_EAX: :ref:`EAX Mode <eax_mode>`
"""
import sys
from Crypto.Cipher import _create_cipher
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
VoidPointer, SmartPointer, c_size_t,
c_uint8_ptr)
_raw_blowfish_lib = load_pycryptodome_raw_lib(
"Crypto.Cipher._raw_blowfish",
"""
int Blowfish_start_operation(const uint8_t key[],
size_t key_len,
void **pResult);
int Blowfish_encrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int Blowfish_decrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int Blowfish_stop_operation(void *state);
"""
)
def _create_base_cipher(dict_parameters):
"""This method instantiates and returns a smart pointer to
a low-level base cipher. It will absorb named parameters in
the process."""
try:
key = dict_parameters.pop("key")
except KeyError:
raise TypeError("Missing 'key' parameter")
if len(key) not in key_size:
raise ValueError("Incorrect Blowfish key length (%d bytes)" % len(key))
start_operation = _raw_blowfish_lib.Blowfish_start_operation
stop_operation = _raw_blowfish_lib.Blowfish_stop_operation
void_p = VoidPointer()
result = start_operation(c_uint8_ptr(key),
c_size_t(len(key)),
void_p.address_of())
if result:
raise ValueError("Error %X while instantiating the Blowfish cipher"
% result)
return SmartPointer(void_p.get(), stop_operation)
def new(key, mode, *args, **kwargs):
"""Create a new Blowfish cipher
:param key:
The secret key to use in the symmetric cipher.
Its length can vary from 5 to 56 bytes.
:type key: bytes, bytearray, memoryview
:param mode:
The chaining mode to use for encryption or decryption.
:type mode: One of the supported ``MODE_*`` constants
:Keyword Arguments:
* **iv** (*bytes*, *bytearray*, *memoryview*) --
(Only applicable for ``MODE_CBC``, ``MODE_CFB``, ``MODE_OFB``,
and ``MODE_OPENPGP`` modes).
The initialization vector to use for encryption or decryption.
For ``MODE_CBC``, ``MODE_CFB``, and ``MODE_OFB`` it must be 8 bytes long.
For ``MODE_OPENPGP`` mode only,
it must be 8 bytes long for encryption
and 10 bytes for decryption (in the latter case, it is
actually the *encrypted* IV which was prefixed to the ciphertext).
If not provided, a random byte string is generated (you must then
read its value with the :attr:`iv` attribute).
* **nonce** (*bytes*, *bytearray*, *memoryview*) --
(Only applicable for ``MODE_EAX`` and ``MODE_CTR``).
A value that must never be reused for any other encryption done
with this key.
For ``MODE_EAX`` there are no
restrictions on its length (recommended: **16** bytes).
For ``MODE_CTR``, its length must be in the range **[0..7]**.
If not provided for ``MODE_EAX``, a random byte string is generated (you
can read it back via the ``nonce`` attribute).
* **segment_size** (*integer*) --
(Only ``MODE_CFB``).The number of **bits** the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.
* **mac_len** : (*integer*) --
(Only ``MODE_EAX``)
Length of the authentication tag, in bytes.
It must be no longer than 8 (default).
* **initial_value** : (*integer*) --
(Only ``MODE_CTR``). The initial value for the counter within
the counter block. By default it is **0**.
:Return: a Blowfish object, of the applicable mode.
"""
return _create_cipher(sys.modules[__name__], key, mode, *args, **kwargs)
MODE_ECB = 1
MODE_CBC = 2
MODE_CFB = 3
MODE_OFB = 5
MODE_CTR = 6
MODE_OPENPGP = 7
MODE_EAX = 9
# Size of a data block (in bytes)
block_size = 8
# Size of a key (in bytes)
key_size = range(4, 56 + 1)

View File

@ -0,0 +1,35 @@
from typing import Union, Dict, Iterable
from Crypto.Cipher._mode_ecb import EcbMode
from Crypto.Cipher._mode_cbc import CbcMode
from Crypto.Cipher._mode_cfb import CfbMode
from Crypto.Cipher._mode_ofb import OfbMode
from Crypto.Cipher._mode_ctr import CtrMode
from Crypto.Cipher._mode_openpgp import OpenPgpMode
from Crypto.Cipher._mode_eax import EaxMode
BlowfishMode = int
MODE_ECB: BlowfishMode
MODE_CBC: BlowfishMode
MODE_CFB: BlowfishMode
MODE_OFB: BlowfishMode
MODE_CTR: BlowfishMode
MODE_OPENPGP: BlowfishMode
MODE_EAX: BlowfishMode
Buffer = Union[bytes, bytearray, memoryview]
def new(key: Buffer,
mode: BlowfishMode,
iv : Buffer = ...,
IV : Buffer = ...,
nonce : Buffer = ...,
segment_size : int = ...,
mac_len : int = ...,
initial_value : Union[int, Buffer] = ...,
counter : Dict = ...) -> \
Union[EcbMode, CbcMode, CfbMode, OfbMode, CtrMode, OpenPgpMode]: ...
block_size: int
key_size: Iterable[int]

View File

@ -0,0 +1,159 @@
# -*- coding: utf-8 -*-
#
# Cipher/CAST.py : CAST
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""
Module's constants for the modes of operation supported with CAST:
:var MODE_ECB: :ref:`Electronic Code Book (ECB) <ecb_mode>`
:var MODE_CBC: :ref:`Cipher-Block Chaining (CBC) <cbc_mode>`
:var MODE_CFB: :ref:`Cipher FeedBack (CFB) <cfb_mode>`
:var MODE_OFB: :ref:`Output FeedBack (OFB) <ofb_mode>`
:var MODE_CTR: :ref:`CounTer Mode (CTR) <ctr_mode>`
:var MODE_OPENPGP: :ref:`OpenPGP Mode <openpgp_mode>`
:var MODE_EAX: :ref:`EAX Mode <eax_mode>`
"""
import sys
from Crypto.Cipher import _create_cipher
from Crypto.Util.py3compat import byte_string
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
VoidPointer, SmartPointer,
c_size_t, c_uint8_ptr)
_raw_cast_lib = load_pycryptodome_raw_lib(
"Crypto.Cipher._raw_cast",
"""
int CAST_start_operation(const uint8_t key[],
size_t key_len,
void **pResult);
int CAST_encrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int CAST_decrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int CAST_stop_operation(void *state);
""")
def _create_base_cipher(dict_parameters):
"""This method instantiates and returns a handle to a low-level
base cipher. It will absorb named parameters in the process."""
try:
key = dict_parameters.pop("key")
except KeyError:
raise TypeError("Missing 'key' parameter")
if len(key) not in key_size:
raise ValueError("Incorrect CAST key length (%d bytes)" % len(key))
start_operation = _raw_cast_lib.CAST_start_operation
stop_operation = _raw_cast_lib.CAST_stop_operation
cipher = VoidPointer()
result = start_operation(c_uint8_ptr(key),
c_size_t(len(key)),
cipher.address_of())
if result:
raise ValueError("Error %X while instantiating the CAST cipher"
% result)
return SmartPointer(cipher.get(), stop_operation)
def new(key, mode, *args, **kwargs):
"""Create a new CAST cipher
:param key:
The secret key to use in the symmetric cipher.
Its length can vary from 5 to 16 bytes.
:type key: bytes, bytearray, memoryview
:param mode:
The chaining mode to use for encryption or decryption.
:type mode: One of the supported ``MODE_*`` constants
:Keyword Arguments:
* **iv** (*bytes*, *bytearray*, *memoryview*) --
(Only applicable for ``MODE_CBC``, ``MODE_CFB``, ``MODE_OFB``,
and ``MODE_OPENPGP`` modes).
The initialization vector to use for encryption or decryption.
For ``MODE_CBC``, ``MODE_CFB``, and ``MODE_OFB`` it must be 8 bytes long.
For ``MODE_OPENPGP`` mode only,
it must be 8 bytes long for encryption
and 10 bytes for decryption (in the latter case, it is
actually the *encrypted* IV which was prefixed to the ciphertext).
If not provided, a random byte string is generated (you must then
read its value with the :attr:`iv` attribute).
* **nonce** (*bytes*, *bytearray*, *memoryview*) --
(Only applicable for ``MODE_EAX`` and ``MODE_CTR``).
A value that must never be reused for any other encryption done
with this key.
For ``MODE_EAX`` there are no
restrictions on its length (recommended: **16** bytes).
For ``MODE_CTR``, its length must be in the range **[0..7]**.
If not provided for ``MODE_EAX``, a random byte string is generated (you
can read it back via the ``nonce`` attribute).
* **segment_size** (*integer*) --
(Only ``MODE_CFB``).The number of **bits** the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.
* **mac_len** : (*integer*) --
(Only ``MODE_EAX``)
Length of the authentication tag, in bytes.
It must be no longer than 8 (default).
* **initial_value** : (*integer*) --
(Only ``MODE_CTR``). The initial value for the counter within
the counter block. By default it is **0**.
:Return: a CAST object, of the applicable mode.
"""
return _create_cipher(sys.modules[__name__], key, mode, *args, **kwargs)
MODE_ECB = 1
MODE_CBC = 2
MODE_CFB = 3
MODE_OFB = 5
MODE_CTR = 6
MODE_OPENPGP = 7
MODE_EAX = 9
# Size of a data block (in bytes)
block_size = 8
# Size of a key (in bytes)
key_size = range(5, 16 + 1)

View File

@ -0,0 +1,35 @@
from typing import Union, Dict, Iterable
from Crypto.Cipher._mode_ecb import EcbMode
from Crypto.Cipher._mode_cbc import CbcMode
from Crypto.Cipher._mode_cfb import CfbMode
from Crypto.Cipher._mode_ofb import OfbMode
from Crypto.Cipher._mode_ctr import CtrMode
from Crypto.Cipher._mode_openpgp import OpenPgpMode
from Crypto.Cipher._mode_eax import EaxMode
CASTMode = int
MODE_ECB: CASTMode
MODE_CBC: CASTMode
MODE_CFB: CASTMode
MODE_OFB: CASTMode
MODE_CTR: CASTMode
MODE_OPENPGP: CASTMode
MODE_EAX: CASTMode
Buffer = Union[bytes, bytearray, memoryview]
def new(key: Buffer,
mode: CASTMode,
iv : Buffer = ...,
IV : Buffer = ...,
nonce : Buffer = ...,
segment_size : int = ...,
mac_len : int = ...,
initial_value : Union[int, Buffer] = ...,
counter : Dict = ...) -> \
Union[EcbMode, CbcMode, CfbMode, OfbMode, CtrMode, OpenPgpMode]: ...
block_size: int
key_size : Iterable[int]

View File

@ -0,0 +1,286 @@
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
from Crypto.Random import get_random_bytes
from Crypto.Util.py3compat import _copy_bytes
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
create_string_buffer,
get_raw_buffer, VoidPointer,
SmartPointer, c_size_t,
c_uint8_ptr, c_ulong,
is_writeable_buffer)
_raw_chacha20_lib = load_pycryptodome_raw_lib("Crypto.Cipher._chacha20",
"""
int chacha20_init(void **pState,
const uint8_t *key,
size_t keySize,
const uint8_t *nonce,
size_t nonceSize);
int chacha20_destroy(void *state);
int chacha20_encrypt(void *state,
const uint8_t in[],
uint8_t out[],
size_t len);
int chacha20_seek(void *state,
unsigned long block_high,
unsigned long block_low,
unsigned offset);
int hchacha20( const uint8_t key[32],
const uint8_t nonce16[16],
uint8_t subkey[32]);
""")
def _HChaCha20(key, nonce):
assert(len(key) == 32)
assert(len(nonce) == 16)
subkey = bytearray(32)
result = _raw_chacha20_lib.hchacha20(
c_uint8_ptr(key),
c_uint8_ptr(nonce),
c_uint8_ptr(subkey))
if result:
raise ValueError("Error %d when deriving subkey with HChaCha20" % result)
return subkey
class ChaCha20Cipher(object):
"""ChaCha20 (or XChaCha20) cipher object.
Do not create it directly. Use :py:func:`new` instead.
:var nonce: The nonce with length 8, 12 or 24 bytes
:vartype nonce: bytes
"""
block_size = 1
def __init__(self, key, nonce):
"""Initialize a ChaCha20/XChaCha20 cipher object
See also `new()` at the module level."""
# XChaCha20 requires a key derivation with HChaCha20
# See 2.3 in https://tools.ietf.org/html/draft-arciszewski-xchacha-03
if len(nonce) == 24:
key = _HChaCha20(key, nonce[:16])
nonce = b'\x00' * 4 + nonce[16:]
self._name = "XChaCha20"
else:
self._name = "ChaCha20"
self.nonce = _copy_bytes(None, None, nonce)
self._next = ( self.encrypt, self.decrypt )
self._state = VoidPointer()
result = _raw_chacha20_lib.chacha20_init(
self._state.address_of(),
c_uint8_ptr(key),
c_size_t(len(key)),
self.nonce,
c_size_t(len(nonce)))
if result:
raise ValueError("Error %d instantiating a %s cipher" % (result,
self._name))
self._state = SmartPointer(self._state.get(),
_raw_chacha20_lib.chacha20_destroy)
def encrypt(self, plaintext, output=None):
"""Encrypt a piece of data.
Args:
plaintext(bytes/bytearray/memoryview): The data to encrypt, of any size.
Keyword Args:
output(bytes/bytearray/memoryview): The location where the ciphertext
is written to. If ``None``, the ciphertext is returned.
Returns:
If ``output`` is ``None``, the ciphertext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.encrypt not in self._next:
raise TypeError("Cipher object can only be used for decryption")
self._next = ( self.encrypt, )
return self._encrypt(plaintext, output)
def _encrypt(self, plaintext, output):
"""Encrypt without FSM checks"""
if output is None:
ciphertext = create_string_buffer(len(plaintext))
else:
ciphertext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(plaintext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = _raw_chacha20_lib.chacha20_encrypt(
self._state.get(),
c_uint8_ptr(plaintext),
c_uint8_ptr(ciphertext),
c_size_t(len(plaintext)))
if result:
raise ValueError("Error %d while encrypting with %s" % (result, self._name))
if output is None:
return get_raw_buffer(ciphertext)
else:
return None
def decrypt(self, ciphertext, output=None):
"""Decrypt a piece of data.
Args:
ciphertext(bytes/bytearray/memoryview): The data to decrypt, of any size.
Keyword Args:
output(bytes/bytearray/memoryview): The location where the plaintext
is written to. If ``None``, the plaintext is returned.
Returns:
If ``output`` is ``None``, the plaintext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.decrypt not in self._next:
raise TypeError("Cipher object can only be used for encryption")
self._next = ( self.decrypt, )
try:
return self._encrypt(ciphertext, output)
except ValueError as e:
raise ValueError(str(e).replace("enc", "dec"))
def seek(self, position):
"""Seek to a certain position in the key stream.
Args:
position (integer):
The absolute position within the key stream, in bytes.
"""
position, offset = divmod(position, 64)
block_low = position & 0xFFFFFFFF
block_high = position >> 32
result = _raw_chacha20_lib.chacha20_seek(
self._state.get(),
c_ulong(block_high),
c_ulong(block_low),
offset
)
if result:
raise ValueError("Error %d while seeking with %s" % (result, self._name))
def _derive_Poly1305_key_pair(key, nonce):
"""Derive a tuple (r, s, nonce) for a Poly1305 MAC.
If nonce is ``None``, a new 12-byte nonce is generated.
"""
if len(key) != 32:
raise ValueError("Poly1305 with ChaCha20 requires a 32-byte key")
if nonce is None:
padded_nonce = nonce = get_random_bytes(12)
elif len(nonce) == 8:
# See RFC7538, 2.6: [...] ChaCha20 as specified here requires a 96-bit
# nonce. So if the provided nonce is only 64-bit, then the first 32
# bits of the nonce will be set to a constant number.
# This will usually be zero, but for protocols with multiple senders it may be
# different for each sender, but should be the same for all
# invocations of the function with the same key by a particular
# sender.
padded_nonce = b'\x00\x00\x00\x00' + nonce
elif len(nonce) == 12:
padded_nonce = nonce
else:
raise ValueError("Poly1305 with ChaCha20 requires an 8- or 12-byte nonce")
rs = new(key=key, nonce=padded_nonce).encrypt(b'\x00' * 32)
return rs[:16], rs[16:], nonce
def new(**kwargs):
"""Create a new ChaCha20 or XChaCha20 cipher
Keyword Args:
key (bytes/bytearray/memoryview): The secret key to use.
It must be 32 bytes long.
nonce (bytes/bytearray/memoryview): A mandatory value that
must never be reused for any other encryption
done with this key.
For ChaCha20, it must be 8 or 12 bytes long.
For XChaCha20, it must be 24 bytes long.
If not provided, 8 bytes will be randomly generated
(you can find them back in the ``nonce`` attribute).
:Return: a :class:`Crypto.Cipher.ChaCha20.ChaCha20Cipher` object
"""
try:
key = kwargs.pop("key")
except KeyError as e:
raise TypeError("Missing parameter %s" % e)
nonce = kwargs.pop("nonce", None)
if nonce is None:
nonce = get_random_bytes(8)
if len(key) != 32:
raise ValueError("ChaCha20/XChaCha20 key must be 32 bytes long")
if len(nonce) not in (8, 12, 24):
raise ValueError("Nonce must be 8/12 bytes(ChaCha20) or 24 bytes (XChaCha20)")
if kwargs:
raise TypeError("Unknown parameters: " + str(kwargs))
return ChaCha20Cipher(key, nonce)
# Size of a data block (in bytes)
block_size = 1
# Size of a key (in bytes)
key_size = 32

View File

@ -0,0 +1,25 @@
from typing import Union, overload
Buffer = Union[bytes, bytearray, memoryview]
def _HChaCha20(key: Buffer, nonce: Buffer) -> bytearray: ...
class ChaCha20Cipher:
block_size: int
nonce: bytes
def __init__(self, key: Buffer, nonce: Buffer) -> None: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
def seek(self, position: int) -> None: ...
def new(key: Buffer, nonce: Buffer = ...) -> ChaCha20Cipher: ...
block_size: int
key_size: int

View File

@ -0,0 +1,336 @@
# ===================================================================
#
# Copyright (c) 2018, Helder Eijs <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
from binascii import unhexlify
from Crypto.Cipher import ChaCha20
from Crypto.Cipher.ChaCha20 import _HChaCha20
from Crypto.Hash import Poly1305, BLAKE2s
from Crypto.Random import get_random_bytes
from Crypto.Util.number import long_to_bytes
from Crypto.Util.py3compat import _copy_bytes, bord
from Crypto.Util._raw_api import is_buffer
def _enum(**enums):
return type('Enum', (), enums)
_CipherStatus = _enum(PROCESSING_AUTH_DATA=1,
PROCESSING_CIPHERTEXT=2,
PROCESSING_DONE=3)
class ChaCha20Poly1305Cipher(object):
"""ChaCha20-Poly1305 and XChaCha20-Poly1305 cipher object.
Do not create it directly. Use :py:func:`new` instead.
:var nonce: The nonce with length 8, 12 or 24 bytes
:vartype nonce: byte string
"""
def __init__(self, key, nonce):
"""Initialize a ChaCha20-Poly1305 AEAD cipher object
See also `new()` at the module level."""
self.nonce = _copy_bytes(None, None, nonce)
self._next = (self.update, self.encrypt, self.decrypt, self.digest,
self.verify)
self._authenticator = Poly1305.new(key=key, nonce=nonce, cipher=ChaCha20)
self._cipher = ChaCha20.new(key=key, nonce=nonce)
self._cipher.seek(64) # Block counter starts at 1
self._len_aad = 0
self._len_ct = 0
self._mac_tag = None
self._status = _CipherStatus.PROCESSING_AUTH_DATA
def update(self, data):
"""Protect the associated data.
Associated data (also known as *additional authenticated data* - AAD)
is the piece of the message that must stay in the clear, while
still allowing the receiver to verify its integrity.
An example is packet headers.
The associated data (possibly split into multiple segments) is
fed into :meth:`update` before any call to :meth:`decrypt` or :meth:`encrypt`.
If there is no associated data, :meth:`update` is not called.
:param bytes/bytearray/memoryview assoc_data:
A piece of associated data. There are no restrictions on its size.
"""
if self.update not in self._next:
raise TypeError("update() method cannot be called")
self._len_aad += len(data)
self._authenticator.update(data)
def _pad_aad(self):
assert(self._status == _CipherStatus.PROCESSING_AUTH_DATA)
if self._len_aad & 0x0F:
self._authenticator.update(b'\x00' * (16 - (self._len_aad & 0x0F)))
self._status = _CipherStatus.PROCESSING_CIPHERTEXT
def encrypt(self, plaintext, output=None):
"""Encrypt a piece of data.
Args:
plaintext(bytes/bytearray/memoryview): The data to encrypt, of any size.
Keyword Args:
output(bytes/bytearray/memoryview): The location where the ciphertext
is written to. If ``None``, the ciphertext is returned.
Returns:
If ``output`` is ``None``, the ciphertext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.encrypt not in self._next:
raise TypeError("encrypt() method cannot be called")
if self._status == _CipherStatus.PROCESSING_AUTH_DATA:
self._pad_aad()
self._next = (self.encrypt, self.digest)
result = self._cipher.encrypt(plaintext, output=output)
self._len_ct += len(plaintext)
if output is None:
self._authenticator.update(result)
else:
self._authenticator.update(output)
return result
def decrypt(self, ciphertext, output=None):
"""Decrypt a piece of data.
Args:
ciphertext(bytes/bytearray/memoryview): The data to decrypt, of any size.
Keyword Args:
output(bytes/bytearray/memoryview): The location where the plaintext
is written to. If ``None``, the plaintext is returned.
Returns:
If ``output`` is ``None``, the plaintext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.decrypt not in self._next:
raise TypeError("decrypt() method cannot be called")
if self._status == _CipherStatus.PROCESSING_AUTH_DATA:
self._pad_aad()
self._next = (self.decrypt, self.verify)
self._len_ct += len(ciphertext)
self._authenticator.update(ciphertext)
return self._cipher.decrypt(ciphertext, output=output)
def _compute_mac(self):
"""Finalize the cipher (if not done already) and return the MAC."""
if self._mac_tag:
assert(self._status == _CipherStatus.PROCESSING_DONE)
return self._mac_tag
assert(self._status != _CipherStatus.PROCESSING_DONE)
if self._status == _CipherStatus.PROCESSING_AUTH_DATA:
self._pad_aad()
if self._len_ct & 0x0F:
self._authenticator.update(b'\x00' * (16 - (self._len_ct & 0x0F)))
self._status = _CipherStatus.PROCESSING_DONE
self._authenticator.update(long_to_bytes(self._len_aad, 8)[::-1])
self._authenticator.update(long_to_bytes(self._len_ct, 8)[::-1])
self._mac_tag = self._authenticator.digest()
return self._mac_tag
def digest(self):
"""Compute the *binary* authentication tag (MAC).
:Return: the MAC tag, as 16 ``bytes``.
"""
if self.digest not in self._next:
raise TypeError("digest() method cannot be called")
self._next = (self.digest,)
return self._compute_mac()
def hexdigest(self):
"""Compute the *printable* authentication tag (MAC).
This method is like :meth:`digest`.
:Return: the MAC tag, as a hexadecimal string.
"""
return "".join(["%02x" % bord(x) for x in self.digest()])
def verify(self, received_mac_tag):
"""Validate the *binary* authentication tag (MAC).
The receiver invokes this method at the very end, to
check if the associated data (if any) and the decrypted
messages are valid.
:param bytes/bytearray/memoryview received_mac_tag:
This is the 16-byte *binary* MAC, as received from the sender.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
if self.verify not in self._next:
raise TypeError("verify() cannot be called"
" when encrypting a message")
self._next = (self.verify,)
secret = get_random_bytes(16)
self._compute_mac()
mac1 = BLAKE2s.new(digest_bits=160, key=secret,
data=self._mac_tag)
mac2 = BLAKE2s.new(digest_bits=160, key=secret,
data=received_mac_tag)
if mac1.digest() != mac2.digest():
raise ValueError("MAC check failed")
def hexverify(self, hex_mac_tag):
"""Validate the *printable* authentication tag (MAC).
This method is like :meth:`verify`.
:param string hex_mac_tag:
This is the *printable* MAC.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
self.verify(unhexlify(hex_mac_tag))
def encrypt_and_digest(self, plaintext):
"""Perform :meth:`encrypt` and :meth:`digest` in one step.
:param plaintext: The data to encrypt, of any size.
:type plaintext: bytes/bytearray/memoryview
:return: a tuple with two ``bytes`` objects:
- the ciphertext, of equal length as the plaintext
- the 16-byte MAC tag
"""
return self.encrypt(plaintext), self.digest()
def decrypt_and_verify(self, ciphertext, received_mac_tag):
"""Perform :meth:`decrypt` and :meth:`verify` in one step.
:param ciphertext: The piece of data to decrypt.
:type ciphertext: bytes/bytearray/memoryview
:param bytes received_mac_tag:
This is the 16-byte *binary* MAC, as received from the sender.
:return: the decrypted data (as ``bytes``)
:raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
plaintext = self.decrypt(ciphertext)
self.verify(received_mac_tag)
return plaintext
def new(**kwargs):
"""Create a new ChaCha20-Poly1305 or XChaCha20-Poly1305 AEAD cipher.
:keyword key: The secret key to use. It must be 32 bytes long.
:type key: byte string
:keyword nonce:
A value that must never be reused for any other encryption
done with this key.
For ChaCha20-Poly1305, it must be 8 or 12 bytes long.
For XChaCha20-Poly1305, it must be 24 bytes long.
If not provided, 12 ``bytes`` will be generated randomly
(you can find them back in the ``nonce`` attribute).
:type nonce: bytes, bytearray, memoryview
:Return: a :class:`Crypto.Cipher.ChaCha20.ChaCha20Poly1305Cipher` object
"""
try:
key = kwargs.pop("key")
except KeyError as e:
raise TypeError("Missing parameter %s" % e)
self._len_ct += len(plaintext)
if len(key) != 32:
raise ValueError("Key must be 32 bytes long")
nonce = kwargs.pop("nonce", None)
if nonce is None:
nonce = get_random_bytes(12)
if len(nonce) in (8, 12):
pass
elif len(nonce) == 24:
key = _HChaCha20(key, nonce[:16])
nonce = b'\x00\x00\x00\x00' + nonce[16:]
else:
raise ValueError("Nonce must be 8, 12 or 24 bytes long")
if not is_buffer(nonce):
raise TypeError("nonce must be bytes, bytearray or memoryview")
if kwargs:
raise TypeError("Unknown parameters: " + str(kwargs))
return ChaCha20Poly1305Cipher(key, nonce)
# Size of a key (in bytes)
key_size = 32

View File

@ -0,0 +1,28 @@
from typing import Union, Tuple, overload
Buffer = Union[bytes, bytearray, memoryview]
class ChaCha20Poly1305Cipher:
nonce: bytes
def __init__(self, key: Buffer, nonce: Buffer) -> None: ...
def update(self, data: Buffer) -> None: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
def digest(self) -> bytes: ...
def hexdigest(self) -> str: ...
def verify(self, received_mac_tag: Buffer) -> None: ...
def hexverify(self, received_mac_tag: str) -> None: ...
def encrypt_and_digest(self, plaintext: Buffer) -> Tuple[bytes, bytes]: ...
def decrypt_and_verify(self, ciphertext: Buffer, received_mac_tag: Buffer) -> bytes: ...
def new(key: Buffer, nonce: Buffer = ...) -> ChaCha20Poly1305Cipher: ...
block_size: int
key_size: int

View File

@ -0,0 +1,158 @@
# -*- coding: utf-8 -*-
#
# Cipher/DES.py : DES
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""
Module's constants for the modes of operation supported with Single DES:
:var MODE_ECB: :ref:`Electronic Code Book (ECB) <ecb_mode>`
:var MODE_CBC: :ref:`Cipher-Block Chaining (CBC) <cbc_mode>`
:var MODE_CFB: :ref:`Cipher FeedBack (CFB) <cfb_mode>`
:var MODE_OFB: :ref:`Output FeedBack (OFB) <ofb_mode>`
:var MODE_CTR: :ref:`CounTer Mode (CTR) <ctr_mode>`
:var MODE_OPENPGP: :ref:`OpenPGP Mode <openpgp_mode>`
:var MODE_EAX: :ref:`EAX Mode <eax_mode>`
"""
import sys
from Crypto.Cipher import _create_cipher
from Crypto.Util.py3compat import byte_string
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
VoidPointer, SmartPointer,
c_size_t, c_uint8_ptr)
_raw_des_lib = load_pycryptodome_raw_lib(
"Crypto.Cipher._raw_des",
"""
int DES_start_operation(const uint8_t key[],
size_t key_len,
void **pResult);
int DES_encrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int DES_decrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int DES_stop_operation(void *state);
""")
def _create_base_cipher(dict_parameters):
"""This method instantiates and returns a handle to a low-level
base cipher. It will absorb named parameters in the process."""
try:
key = dict_parameters.pop("key")
except KeyError:
raise TypeError("Missing 'key' parameter")
if len(key) != key_size:
raise ValueError("Incorrect DES key length (%d bytes)" % len(key))
start_operation = _raw_des_lib.DES_start_operation
stop_operation = _raw_des_lib.DES_stop_operation
cipher = VoidPointer()
result = start_operation(c_uint8_ptr(key),
c_size_t(len(key)),
cipher.address_of())
if result:
raise ValueError("Error %X while instantiating the DES cipher"
% result)
return SmartPointer(cipher.get(), stop_operation)
def new(key, mode, *args, **kwargs):
"""Create a new DES cipher.
:param key:
The secret key to use in the symmetric cipher.
It must be 8 byte long. The parity bits will be ignored.
:type key: bytes/bytearray/memoryview
:param mode:
The chaining mode to use for encryption or decryption.
:type mode: One of the supported ``MODE_*`` constants
:Keyword Arguments:
* **iv** (*byte string*) --
(Only applicable for ``MODE_CBC``, ``MODE_CFB``, ``MODE_OFB``,
and ``MODE_OPENPGP`` modes).
The initialization vector to use for encryption or decryption.
For ``MODE_CBC``, ``MODE_CFB``, and ``MODE_OFB`` it must be 8 bytes long.
For ``MODE_OPENPGP`` mode only,
it must be 8 bytes long for encryption
and 10 bytes for decryption (in the latter case, it is
actually the *encrypted* IV which was prefixed to the ciphertext).
If not provided, a random byte string is generated (you must then
read its value with the :attr:`iv` attribute).
* **nonce** (*byte string*) --
(Only applicable for ``MODE_EAX`` and ``MODE_CTR``).
A value that must never be reused for any other encryption done
with this key.
For ``MODE_EAX`` there are no
restrictions on its length (recommended: **16** bytes).
For ``MODE_CTR``, its length must be in the range **[0..7]**.
If not provided for ``MODE_EAX``, a random byte string is generated (you
can read it back via the ``nonce`` attribute).
* **segment_size** (*integer*) --
(Only ``MODE_CFB``).The number of **bits** the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.
* **mac_len** : (*integer*) --
(Only ``MODE_EAX``)
Length of the authentication tag, in bytes.
It must be no longer than 8 (default).
* **initial_value** : (*integer*) --
(Only ``MODE_CTR``). The initial value for the counter within
the counter block. By default it is **0**.
:Return: a DES object, of the applicable mode.
"""
return _create_cipher(sys.modules[__name__], key, mode, *args, **kwargs)
MODE_ECB = 1
MODE_CBC = 2
MODE_CFB = 3
MODE_OFB = 5
MODE_CTR = 6
MODE_OPENPGP = 7
MODE_EAX = 9
# Size of a data block (in bytes)
block_size = 8
# Size of a key (in bytes)
key_size = 8

View File

@ -0,0 +1,35 @@
from typing import Union, Dict, Iterable
from Crypto.Cipher._mode_ecb import EcbMode
from Crypto.Cipher._mode_cbc import CbcMode
from Crypto.Cipher._mode_cfb import CfbMode
from Crypto.Cipher._mode_ofb import OfbMode
from Crypto.Cipher._mode_ctr import CtrMode
from Crypto.Cipher._mode_openpgp import OpenPgpMode
from Crypto.Cipher._mode_eax import EaxMode
DESMode = int
MODE_ECB: DESMode
MODE_CBC: DESMode
MODE_CFB: DESMode
MODE_OFB: DESMode
MODE_CTR: DESMode
MODE_OPENPGP: DESMode
MODE_EAX: DESMode
Buffer = Union[bytes, bytearray, memoryview]
def new(key: Buffer,
mode: DESMode,
iv : Buffer = ...,
IV : Buffer = ...,
nonce : Buffer = ...,
segment_size : int = ...,
mac_len : int = ...,
initial_value : Union[int, Buffer] = ...,
counter : Dict = ...) -> \
Union[EcbMode, CbcMode, CfbMode, OfbMode, CtrMode, OpenPgpMode]: ...
block_size: int
key_size: int

View File

@ -0,0 +1,187 @@
# -*- coding: utf-8 -*-
#
# Cipher/DES3.py : DES3
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""
Module's constants for the modes of operation supported with Triple DES:
:var MODE_ECB: :ref:`Electronic Code Book (ECB) <ecb_mode>`
:var MODE_CBC: :ref:`Cipher-Block Chaining (CBC) <cbc_mode>`
:var MODE_CFB: :ref:`Cipher FeedBack (CFB) <cfb_mode>`
:var MODE_OFB: :ref:`Output FeedBack (OFB) <ofb_mode>`
:var MODE_CTR: :ref:`CounTer Mode (CTR) <ctr_mode>`
:var MODE_OPENPGP: :ref:`OpenPGP Mode <openpgp_mode>`
:var MODE_EAX: :ref:`EAX Mode <eax_mode>`
"""
import sys
from Crypto.Cipher import _create_cipher
from Crypto.Util.py3compat import byte_string, bchr, bord, bstr
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
VoidPointer, SmartPointer,
c_size_t)
_raw_des3_lib = load_pycryptodome_raw_lib(
"Crypto.Cipher._raw_des3",
"""
int DES3_start_operation(const uint8_t key[],
size_t key_len,
void **pResult);
int DES3_encrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int DES3_decrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int DES3_stop_operation(void *state);
""")
def adjust_key_parity(key_in):
"""Set the parity bits in a TDES key.
:param key_in: the TDES key whose bits need to be adjusted
:type key_in: byte string
:returns: a copy of ``key_in``, with the parity bits correctly set
:rtype: byte string
:raises ValueError: if the TDES key is not 16 or 24 bytes long
:raises ValueError: if the TDES key degenerates into Single DES
"""
def parity_byte(key_byte):
parity = 1
for i in range(1, 8):
parity ^= (key_byte >> i) & 1
return (key_byte & 0xFE) | parity
if len(key_in) not in key_size:
raise ValueError("Not a valid TDES key")
key_out = b"".join([ bchr(parity_byte(bord(x))) for x in key_in ])
if key_out[:8] == key_out[8:16] or key_out[-16:-8] == key_out[-8:]:
raise ValueError("Triple DES key degenerates to single DES")
return key_out
def _create_base_cipher(dict_parameters):
"""This method instantiates and returns a handle to a low-level base cipher.
It will absorb named parameters in the process."""
try:
key_in = dict_parameters.pop("key")
except KeyError:
raise TypeError("Missing 'key' parameter")
key = adjust_key_parity(bstr(key_in))
start_operation = _raw_des3_lib.DES3_start_operation
stop_operation = _raw_des3_lib.DES3_stop_operation
cipher = VoidPointer()
result = start_operation(key,
c_size_t(len(key)),
cipher.address_of())
if result:
raise ValueError("Error %X while instantiating the TDES cipher"
% result)
return SmartPointer(cipher.get(), stop_operation)
def new(key, mode, *args, **kwargs):
"""Create a new Triple DES cipher.
:param key:
The secret key to use in the symmetric cipher.
It must be 8 byte long. The parity bits will be ignored.
:type key: bytes/bytearray/memoryview
:param mode:
The chaining mode to use for encryption or decryption.
:type mode: One of the supported ``MODE_*`` constants
:Keyword Arguments:
* **iv** (*bytes*, *bytearray*, *memoryview*) --
(Only applicable for ``MODE_CBC``, ``MODE_CFB``, ``MODE_OFB``,
and ``MODE_OPENPGP`` modes).
The initialization vector to use for encryption or decryption.
For ``MODE_CBC``, ``MODE_CFB``, and ``MODE_OFB`` it must be 8 bytes long.
For ``MODE_OPENPGP`` mode only,
it must be 8 bytes long for encryption
and 10 bytes for decryption (in the latter case, it is
actually the *encrypted* IV which was prefixed to the ciphertext).
If not provided, a random byte string is generated (you must then
read its value with the :attr:`iv` attribute).
* **nonce** (*bytes*, *bytearray*, *memoryview*) --
(Only applicable for ``MODE_EAX`` and ``MODE_CTR``).
A value that must never be reused for any other encryption done
with this key.
For ``MODE_EAX`` there are no
restrictions on its length (recommended: **16** bytes).
For ``MODE_CTR``, its length must be in the range **[0..7]**.
If not provided for ``MODE_EAX``, a random byte string is generated (you
can read it back via the ``nonce`` attribute).
* **segment_size** (*integer*) --
(Only ``MODE_CFB``).The number of **bits** the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.
* **mac_len** : (*integer*) --
(Only ``MODE_EAX``)
Length of the authentication tag, in bytes.
It must be no longer than 8 (default).
* **initial_value** : (*integer*) --
(Only ``MODE_CTR``). The initial value for the counter within
the counter block. By default it is **0**.
:Return: a Triple DES object, of the applicable mode.
"""
return _create_cipher(sys.modules[__name__], key, mode, *args, **kwargs)
MODE_ECB = 1
MODE_CBC = 2
MODE_CFB = 3
MODE_OFB = 5
MODE_CTR = 6
MODE_OPENPGP = 7
MODE_EAX = 9
# Size of a data block (in bytes)
block_size = 8
# Size of a key (in bytes)
key_size = (16, 24)

View File

@ -0,0 +1,37 @@
from typing import Union, Dict, Tuple
from Crypto.Cipher._mode_ecb import EcbMode
from Crypto.Cipher._mode_cbc import CbcMode
from Crypto.Cipher._mode_cfb import CfbMode
from Crypto.Cipher._mode_ofb import OfbMode
from Crypto.Cipher._mode_ctr import CtrMode
from Crypto.Cipher._mode_openpgp import OpenPgpMode
from Crypto.Cipher._mode_eax import EaxMode
def adjust_key_parity(key_in: bytes) -> bytes: ...
DES3Mode = int
MODE_ECB: DES3Mode
MODE_CBC: DES3Mode
MODE_CFB: DES3Mode
MODE_OFB: DES3Mode
MODE_CTR: DES3Mode
MODE_OPENPGP: DES3Mode
MODE_EAX: DES3Mode
Buffer = Union[bytes, bytearray, memoryview]
def new(key: Buffer,
mode: DES3Mode,
iv : Buffer = ...,
IV : Buffer = ...,
nonce : Buffer = ...,
segment_size : int = ...,
mac_len : int = ...,
initial_value : Union[int, Buffer] = ...,
counter : Dict = ...) -> \
Union[EcbMode, CbcMode, CfbMode, OfbMode, CtrMode, OpenPgpMode]: ...
block_size: int
key_size: Tuple[int, int]

View File

@ -0,0 +1,240 @@
# -*- coding: utf-8 -*-
#
# Cipher/PKCS1_OAEP.py : PKCS#1 OAEP
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
from Crypto.Signature.pss import MGF1
import Crypto.Hash.SHA1
from Crypto.Util.py3compat import bord, _copy_bytes
import Crypto.Util.number
from Crypto.Util.number import ceil_div, bytes_to_long, long_to_bytes
from Crypto.Util.strxor import strxor
from Crypto import Random
class PKCS1OAEP_Cipher:
"""Cipher object for PKCS#1 v1.5 OAEP.
Do not create directly: use :func:`new` instead."""
def __init__(self, key, hashAlgo, mgfunc, label, randfunc):
"""Initialize this PKCS#1 OAEP cipher object.
:Parameters:
key : an RSA key object
If a private half is given, both encryption and decryption are possible.
If a public half is given, only encryption is possible.
hashAlgo : hash object
The hash function to use. This can be a module under `Crypto.Hash`
or an existing hash object created from any of such modules. If not specified,
`Crypto.Hash.SHA1` is used.
mgfunc : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
If not specified, the standard MGF1 is used (a safe choice).
label : bytes/bytearray/memoryview
A label to apply to this particular encryption. If not specified,
an empty string is used. Specifying a label does not improve
security.
randfunc : callable
A function that returns random bytes.
:attention: Modify the mask generation function only if you know what you are doing.
Sender and receiver must use the same one.
"""
self._key = key
if hashAlgo:
self._hashObj = hashAlgo
else:
self._hashObj = Crypto.Hash.SHA1
if mgfunc:
self._mgf = mgfunc
else:
self._mgf = lambda x,y: MGF1(x,y,self._hashObj)
self._label = _copy_bytes(None, None, label)
self._randfunc = randfunc
def can_encrypt(self):
"""Legacy function to check if you can call :meth:`encrypt`.
.. deprecated:: 3.0"""
return self._key.can_encrypt()
def can_decrypt(self):
"""Legacy function to check if you can call :meth:`decrypt`.
.. deprecated:: 3.0"""
return self._key.can_decrypt()
def encrypt(self, message):
"""Encrypt a message with PKCS#1 OAEP.
:param message:
The message to encrypt, also known as plaintext. It can be of
variable length, but not longer than the RSA modulus (in bytes)
minus 2, minus twice the hash output size.
For instance, if you use RSA 2048 and SHA-256, the longest message
you can encrypt is 190 byte long.
:type message: bytes/bytearray/memoryview
:returns: The ciphertext, as large as the RSA modulus.
:rtype: bytes
:raises ValueError:
if the message is too long.
"""
# See 7.1.1 in RFC3447
modBits = Crypto.Util.number.size(self._key.n)
k = ceil_div(modBits, 8) # Convert from bits to bytes
hLen = self._hashObj.digest_size
mLen = len(message)
# Step 1b
ps_len = k - mLen - 2 * hLen - 2
if ps_len < 0:
raise ValueError("Plaintext is too long.")
# Step 2a
lHash = self._hashObj.new(self._label).digest()
# Step 2b
ps = b'\x00' * ps_len
# Step 2c
db = lHash + ps + b'\x01' + _copy_bytes(None, None, message)
# Step 2d
ros = self._randfunc(hLen)
# Step 2e
dbMask = self._mgf(ros, k-hLen-1)
# Step 2f
maskedDB = strxor(db, dbMask)
# Step 2g
seedMask = self._mgf(maskedDB, hLen)
# Step 2h
maskedSeed = strxor(ros, seedMask)
# Step 2i
em = b'\x00' + maskedSeed + maskedDB
# Step 3a (OS2IP)
em_int = bytes_to_long(em)
# Step 3b (RSAEP)
m_int = self._key._encrypt(em_int)
# Step 3c (I2OSP)
c = long_to_bytes(m_int, k)
return c
def decrypt(self, ciphertext):
"""Decrypt a message with PKCS#1 OAEP.
:param ciphertext: The encrypted message.
:type ciphertext: bytes/bytearray/memoryview
:returns: The original message (plaintext).
:rtype: bytes
:raises ValueError:
if the ciphertext has the wrong length, or if decryption
fails the integrity check (in which case, the decryption
key is probably wrong).
:raises TypeError:
if the RSA key has no private half (i.e. you are trying
to decrypt using a public key).
"""
# See 7.1.2 in RFC3447
modBits = Crypto.Util.number.size(self._key.n)
k = ceil_div(modBits,8) # Convert from bits to bytes
hLen = self._hashObj.digest_size
# Step 1b and 1c
if len(ciphertext) != k or k<hLen+2:
raise ValueError("Ciphertext with incorrect length.")
# Step 2a (O2SIP)
ct_int = bytes_to_long(ciphertext)
# Step 2b (RSADP)
m_int = self._key._decrypt(ct_int)
# Complete step 2c (I2OSP)
em = long_to_bytes(m_int, k)
# Step 3a
lHash = self._hashObj.new(self._label).digest()
# Step 3b
y = em[0]
# y must be 0, but we MUST NOT check it here in order not to
# allow attacks like Manger's (http://dl.acm.org/citation.cfm?id=704143)
maskedSeed = em[1:hLen+1]
maskedDB = em[hLen+1:]
# Step 3c
seedMask = self._mgf(maskedDB, hLen)
# Step 3d
seed = strxor(maskedSeed, seedMask)
# Step 3e
dbMask = self._mgf(seed, k-hLen-1)
# Step 3f
db = strxor(maskedDB, dbMask)
# Step 3g
valid = 1
one = db[hLen:].find(b'\x01')
lHash1 = db[:hLen]
if lHash1!=lHash:
valid = 0
if one<0:
valid = 0
if bord(y) != 0:
valid = 0
if not valid:
raise ValueError("Incorrect decryption.")
# Step 4
return db[hLen+one+1:]
def new(key, hashAlgo=None, mgfunc=None, label=b'', randfunc=None):
"""Return a cipher object :class:`PKCS1OAEP_Cipher` that can be used to perform PKCS#1 OAEP encryption or decryption.
:param key:
The key object to use to encrypt or decrypt the message.
Decryption is only possible with a private RSA key.
:type key: RSA key object
:param hashAlgo:
The hash function to use. This can be a module under `Crypto.Hash`
or an existing hash object created from any of such modules.
If not specified, `Crypto.Hash.SHA1` is used.
:type hashAlgo: hash object
:param mgfunc:
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
If not specified, the standard MGF1 is used (a safe choice).
:type mgfunc: callable
:param label:
A label to apply to this particular encryption. If not specified,
an empty string is used. Specifying a label does not improve
security.
:type label: bytes/bytearray/memoryview
:param randfunc:
A function that returns random bytes.
The default is `Random.get_random_bytes`.
:type randfunc: callable
"""
if randfunc is None:
randfunc = Random.get_random_bytes
return PKCS1OAEP_Cipher(key, hashAlgo, mgfunc, label, randfunc)

View File

@ -0,0 +1,35 @@
from typing import Optional, Union, Callable, Any, overload
from typing_extensions import Protocol
from Crypto.PublicKey.RSA import RsaKey
class HashLikeClass(Protocol):
digest_size : int
def new(self, data: Optional[bytes] = ...) -> Any: ...
class HashLikeModule(Protocol):
digest_size : int
@staticmethod
def new(data: Optional[bytes] = ...) -> Any: ...
HashLike = Union[HashLikeClass, HashLikeModule]
Buffer = Union[bytes, bytearray, memoryview]
class PKCS1OAEP_Cipher:
def __init__(self,
key: RsaKey,
hashAlgo: HashLike,
mgfunc: Callable[[bytes, int], bytes],
label: Buffer,
randfunc: Callable[[int], bytes]) -> None: ...
def can_encrypt(self) -> bool: ...
def can_decrypt(self) -> bool: ...
def encrypt(self, message: Buffer) -> bytes: ...
def decrypt(self, ciphertext: Buffer) -> bytes: ...
def new(key: RsaKey,
hashAlgo: Optional[HashLike] = ...,
mgfunc: Optional[Callable[[bytes, int], bytes]] = ...,
label: Optional[Buffer] = ...,
randfunc: Optional[Callable[[int], bytes]] = ...) -> PKCS1OAEP_Cipher: ...

View File

@ -0,0 +1,199 @@
# -*- coding: utf-8 -*-
#
# Cipher/PKCS1-v1_5.py : PKCS#1 v1.5
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
__all__ = [ 'new', 'PKCS115_Cipher' ]
from Crypto.Util.number import ceil_div, bytes_to_long, long_to_bytes
from Crypto.Util.py3compat import bord, _copy_bytes
import Crypto.Util.number
from Crypto import Random
class PKCS115_Cipher:
"""This cipher can perform PKCS#1 v1.5 RSA encryption or decryption.
Do not instantiate directly. Use :func:`Crypto.Cipher.PKCS1_v1_5.new` instead."""
def __init__(self, key, randfunc):
"""Initialize this PKCS#1 v1.5 cipher object.
:Parameters:
key : an RSA key object
If a private half is given, both encryption and decryption are possible.
If a public half is given, only encryption is possible.
randfunc : callable
Function that returns random bytes.
"""
self._key = key
self._randfunc = randfunc
def can_encrypt(self):
"""Return True if this cipher object can be used for encryption."""
return self._key.can_encrypt()
def can_decrypt(self):
"""Return True if this cipher object can be used for decryption."""
return self._key.can_decrypt()
def encrypt(self, message):
"""Produce the PKCS#1 v1.5 encryption of a message.
This function is named ``RSAES-PKCS1-V1_5-ENCRYPT``, and it is specified in
`section 7.2.1 of RFC8017
<https://tools.ietf.org/html/rfc8017#page-28>`_.
:param message:
The message to encrypt, also known as plaintext. It can be of
variable length, but not longer than the RSA modulus (in bytes) minus 11.
:type message: bytes/bytearray/memoryview
:Returns: A byte string, the ciphertext in which the message is encrypted.
It is as long as the RSA modulus (in bytes).
:Raises ValueError:
If the RSA key length is not sufficiently long to deal with the given
message.
"""
# See 7.2.1 in RFC8017
modBits = Crypto.Util.number.size(self._key.n)
k = ceil_div(modBits,8) # Convert from bits to bytes
mLen = len(message)
# Step 1
if mLen > k - 11:
raise ValueError("Plaintext is too long.")
# Step 2a
ps = []
while len(ps) != k - mLen - 3:
new_byte = self._randfunc(1)
if bord(new_byte[0]) == 0x00:
continue
ps.append(new_byte)
ps = b"".join(ps)
assert(len(ps) == k - mLen - 3)
# Step 2b
em = b'\x00\x02' + ps + b'\x00' + _copy_bytes(None, None, message)
# Step 3a (OS2IP)
em_int = bytes_to_long(em)
# Step 3b (RSAEP)
m_int = self._key._encrypt(em_int)
# Step 3c (I2OSP)
c = long_to_bytes(m_int, k)
return c
def decrypt(self, ciphertext, sentinel):
r"""Decrypt a PKCS#1 v1.5 ciphertext.
This function is named ``RSAES-PKCS1-V1_5-DECRYPT``, and is specified in
`section 7.2.2 of RFC8017
<https://tools.ietf.org/html/rfc8017#page-29>`_.
:param ciphertext:
The ciphertext that contains the message to recover.
:type ciphertext: bytes/bytearray/memoryview
:param sentinel:
The object to return whenever an error is detected.
:type sentinel: any type
:Returns: A byte string. It is either the original message or the ``sentinel`` (in case of an error).
:Raises ValueError:
If the ciphertext length is incorrect
:Raises TypeError:
If the RSA key has no private half (i.e. it cannot be used for
decyption).
.. warning::
You should **never** let the party who submitted the ciphertext know that
this function returned the ``sentinel`` value.
Armed with such knowledge (for a fair amount of carefully crafted but invalid ciphertexts),
an attacker is able to recontruct the plaintext of any other encryption that were carried out
with the same RSA public key (see `Bleichenbacher's`__ attack).
In general, it should not be possible for the other party to distinguish
whether processing at the server side failed because the value returned
was a ``sentinel`` as opposed to a random, invalid message.
In fact, the second option is not that unlikely: encryption done according to PKCS#1 v1.5
embeds no good integrity check. There is roughly one chance
in 2\ :sup:`16` for a random ciphertext to be returned as a valid message
(although random looking).
It is therefore advisabled to:
1. Select as ``sentinel`` a value that resembles a plausable random, invalid message.
2. Not report back an error as soon as you detect a ``sentinel`` value.
Put differently, you should not explicitly check if the returned value is the ``sentinel`` or not.
3. Cover all possible errors with a single, generic error indicator.
4. Embed into the definition of ``message`` (at the protocol level) a digest (e.g. ``SHA-1``).
It is recommended for it to be the rightmost part ``message``.
5. Where possible, monitor the number of errors due to ciphertexts originating from the same party,
and slow down the rate of the requests from such party (or even blacklist it altogether).
**If you are designing a new protocol, consider using the more robust PKCS#1 OAEP.**
.. __: http://www.bell-labs.com/user/bleichen/papers/pkcs.ps
"""
# See 7.2.1 in RFC3447
modBits = Crypto.Util.number.size(self._key.n)
k = ceil_div(modBits,8) # Convert from bits to bytes
# Step 1
if len(ciphertext) != k:
raise ValueError("Ciphertext with incorrect length.")
# Step 2a (O2SIP)
ct_int = bytes_to_long(ciphertext)
# Step 2b (RSADP)
m_int = self._key._decrypt(ct_int)
# Complete step 2c (I2OSP)
em = long_to_bytes(m_int, k)
# Step 3
sep = em.find(b'\x00', 2)
if not em.startswith(b'\x00\x02') or sep < 10:
return sentinel
# Step 4
return em[sep + 1:]
def new(key, randfunc=None):
"""Create a cipher for performing PKCS#1 v1.5 encryption or decryption.
:param key:
The key to use to encrypt or decrypt the message. This is a `Crypto.PublicKey.RSA` object.
Decryption is only possible if *key* is a private RSA key.
:type key: RSA key object
:param randfunc:
Function that return random bytes.
The default is :func:`Crypto.Random.get_random_bytes`.
:type randfunc: callable
:returns: A cipher object `PKCS115_Cipher`.
"""
if randfunc is None:
randfunc = Random.get_random_bytes
return PKCS115_Cipher(key, randfunc)

View File

@ -0,0 +1,17 @@
from typing import Callable, Union, Any, Optional
from Crypto.PublicKey.RSA import RsaKey
Buffer = Union[bytes, bytearray, memoryview]
class PKCS115_Cipher:
def __init__(self,
key: RsaKey,
randfunc: Callable[[int], bytes]) -> None: ...
def can_encrypt(self) -> bool: ...
def can_decrypt(self) -> bool: ...
def encrypt(self, message: Buffer) -> bytes: ...
def decrypt(self, ciphertext: Buffer) -> bytes: ...
def new(key: Buffer,
randfunc: Optional[Callable[[int], bytes]] = ...) -> PKCS115_Cipher: ...

View File

@ -0,0 +1,167 @@
# -*- coding: utf-8 -*-
#
# Cipher/Salsa20.py : Salsa20 stream cipher (http://cr.yp.to/snuffle.html)
#
# Contributed by Fabrizio Tarizzo <fabrizio@fabriziotarizzo.org>.
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
from Crypto.Util.py3compat import _copy_bytes
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
create_string_buffer,
get_raw_buffer, VoidPointer,
SmartPointer, c_size_t,
c_uint8_ptr, is_writeable_buffer)
from Crypto.Random import get_random_bytes
_raw_salsa20_lib = load_pycryptodome_raw_lib("Crypto.Cipher._Salsa20",
"""
int Salsa20_stream_init(uint8_t *key, size_t keylen,
uint8_t *nonce, size_t nonce_len,
void **pSalsaState);
int Salsa20_stream_destroy(void *salsaState);
int Salsa20_stream_encrypt(void *salsaState,
const uint8_t in[],
uint8_t out[], size_t len);
""")
class Salsa20Cipher:
"""Salsa20 cipher object. Do not create it directly. Use :py:func:`new`
instead.
:var nonce: The nonce with length 8
:vartype nonce: byte string
"""
def __init__(self, key, nonce):
"""Initialize a Salsa20 cipher object
See also `new()` at the module level."""
if len(key) not in key_size:
raise ValueError("Incorrect key length for Salsa20 (%d bytes)" % len(key))
if len(nonce) != 8:
raise ValueError("Incorrect nonce length for Salsa20 (%d bytes)" %
len(nonce))
self.nonce = _copy_bytes(None, None, nonce)
self._state = VoidPointer()
result = _raw_salsa20_lib.Salsa20_stream_init(
c_uint8_ptr(key),
c_size_t(len(key)),
c_uint8_ptr(nonce),
c_size_t(len(nonce)),
self._state.address_of())
if result:
raise ValueError("Error %d instantiating a Salsa20 cipher")
self._state = SmartPointer(self._state.get(),
_raw_salsa20_lib.Salsa20_stream_destroy)
self.block_size = 1
self.key_size = len(key)
def encrypt(self, plaintext, output=None):
"""Encrypt a piece of data.
Args:
plaintext(bytes/bytearray/memoryview): The data to encrypt, of any size.
Keyword Args:
output(bytes/bytearray/memoryview): The location where the ciphertext
is written to. If ``None``, the ciphertext is returned.
Returns:
If ``output`` is ``None``, the ciphertext is returned as ``bytes``.
Otherwise, ``None``.
"""
if output is None:
ciphertext = create_string_buffer(len(plaintext))
else:
ciphertext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(plaintext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = _raw_salsa20_lib.Salsa20_stream_encrypt(
self._state.get(),
c_uint8_ptr(plaintext),
c_uint8_ptr(ciphertext),
c_size_t(len(plaintext)))
if result:
raise ValueError("Error %d while encrypting with Salsa20" % result)
if output is None:
return get_raw_buffer(ciphertext)
else:
return None
def decrypt(self, ciphertext, output=None):
"""Decrypt a piece of data.
Args:
ciphertext(bytes/bytearray/memoryview): The data to decrypt, of any size.
Keyword Args:
output(bytes/bytearray/memoryview): The location where the plaintext
is written to. If ``None``, the plaintext is returned.
Returns:
If ``output`` is ``None``, the plaintext is returned as ``bytes``.
Otherwise, ``None``.
"""
try:
return self.encrypt(ciphertext, output=output)
except ValueError as e:
raise ValueError(str(e).replace("enc", "dec"))
def new(key, nonce=None):
"""Create a new Salsa20 cipher
:keyword key: The secret key to use. It must be 16 or 32 bytes long.
:type key: bytes/bytearray/memoryview
:keyword nonce:
A value that must never be reused for any other encryption
done with this key. It must be 8 bytes long.
If not provided, a random byte string will be generated (you can read
it back via the ``nonce`` attribute of the returned object).
:type nonce: bytes/bytearray/memoryview
:Return: a :class:`Crypto.Cipher.Salsa20.Salsa20Cipher` object
"""
if nonce is None:
nonce = get_random_bytes(8)
return Salsa20Cipher(key, nonce)
# Size of a data block (in bytes)
block_size = 1
# Size of a key (in bytes)
key_size = (16, 32)

View File

@ -0,0 +1,27 @@
from typing import Union, Tuple, Optional, overload
Buffer = Union[bytes, bytearray, memoryview]
class Salsa20Cipher:
nonce: bytes
block_size: int
key_size: int
def __init__(self,
key: Buffer,
nonce: Buffer) -> None: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
def new(key: Buffer, nonce: Optional[Buffer] = ...) -> Salsa20Cipher: ...
block_size: int
key_size: Tuple[int, int]

View File

@ -0,0 +1,131 @@
# ===================================================================
#
# Copyright (c) 2019, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
import sys
from Crypto.Cipher import _create_cipher
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
VoidPointer, SmartPointer, c_size_t,
c_uint8_ptr, c_uint)
_raw_blowfish_lib = load_pycryptodome_raw_lib(
"Crypto.Cipher._raw_eksblowfish",
"""
int EKSBlowfish_start_operation(const uint8_t key[],
size_t key_len,
const uint8_t salt[16],
size_t salt_len,
unsigned cost,
unsigned invert,
void **pResult);
int EKSBlowfish_encrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int EKSBlowfish_decrypt(const void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int EKSBlowfish_stop_operation(void *state);
"""
)
def _create_base_cipher(dict_parameters):
"""This method instantiates and returns a smart pointer to
a low-level base cipher. It will absorb named parameters in
the process."""
try:
key = dict_parameters.pop("key")
salt = dict_parameters.pop("salt")
cost = dict_parameters.pop("cost")
except KeyError as e:
raise TypeError("Missing EKSBlowfish parameter: " + str(e))
invert = dict_parameters.pop("invert", True)
if len(key) not in key_size:
raise ValueError("Incorrect EKSBlowfish key length (%d bytes)" % len(key))
start_operation = _raw_blowfish_lib.EKSBlowfish_start_operation
stop_operation = _raw_blowfish_lib.EKSBlowfish_stop_operation
void_p = VoidPointer()
result = start_operation(c_uint8_ptr(key),
c_size_t(len(key)),
c_uint8_ptr(salt),
c_size_t(len(salt)),
c_uint(cost),
c_uint(int(invert)),
void_p.address_of())
if result:
raise ValueError("Error %X while instantiating the EKSBlowfish cipher"
% result)
return SmartPointer(void_p.get(), stop_operation)
def new(key, mode, salt, cost, invert):
"""Create a new EKSBlowfish cipher
Args:
key (bytes, bytearray, memoryview):
The secret key to use in the symmetric cipher.
Its length can vary from 0 to 72 bytes.
mode (one of the supported ``MODE_*`` constants):
The chaining mode to use for encryption or decryption.
salt (bytes, bytearray, memoryview):
The salt that bcrypt uses to thwart rainbow table attacks
cost (integer):
The complexity factor in bcrypt
invert (bool):
If ``False``, in the inner loop use ``ExpandKey`` first over the salt
and then over the key, as defined in
the `original bcrypt specification <https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node4.html>`_.
If ``True``, reverse the order, as in the first implementation of
`bcrypt` in OpenBSD.
:Return: an EKSBlowfish object
"""
kwargs = { 'salt':salt, 'cost':cost, 'invert':invert }
return _create_cipher(sys.modules[__name__], key, mode, **kwargs)
MODE_ECB = 1
# Size of a data block (in bytes)
block_size = 8
# Size of a key (in bytes)
key_size = range(0, 72 + 1)

View File

@ -0,0 +1,15 @@
from typing import Union, Iterable
from Crypto.Cipher._mode_ecb import EcbMode
MODE_ECB: int
Buffer = Union[bytes, bytearray, memoryview]
def new(key: Buffer,
mode: int,
salt: Buffer,
cost: int) -> EcbMode: ...
block_size: int
key_size: Iterable[int]

View File

@ -0,0 +1,79 @@
#
# A block cipher is instantiated as a combination of:
# 1. A base cipher (such as AES)
# 2. A mode of operation (such as CBC)
#
# Both items are implemented as C modules.
#
# The API of #1 is (replace "AES" with the name of the actual cipher):
# - AES_start_operaion(key) --> base_cipher_state
# - AES_encrypt(base_cipher_state, in, out, length)
# - AES_decrypt(base_cipher_state, in, out, length)
# - AES_stop_operation(base_cipher_state)
#
# Where base_cipher_state is AES_State, a struct with BlockBase (set of
# pointers to encrypt/decrypt/stop) followed by cipher-specific data.
#
# The API of #2 is (replace "CBC" with the name of the actual mode):
# - CBC_start_operation(base_cipher_state) --> mode_state
# - CBC_encrypt(mode_state, in, out, length)
# - CBC_decrypt(mode_state, in, out, length)
# - CBC_stop_operation(mode_state)
#
# where mode_state is a a pointer to base_cipher_state plus mode-specific data.
import os
from Crypto.Cipher._mode_ecb import _create_ecb_cipher
from Crypto.Cipher._mode_cbc import _create_cbc_cipher
from Crypto.Cipher._mode_cfb import _create_cfb_cipher
from Crypto.Cipher._mode_ofb import _create_ofb_cipher
from Crypto.Cipher._mode_ctr import _create_ctr_cipher
from Crypto.Cipher._mode_openpgp import _create_openpgp_cipher
from Crypto.Cipher._mode_ccm import _create_ccm_cipher
from Crypto.Cipher._mode_eax import _create_eax_cipher
from Crypto.Cipher._mode_siv import _create_siv_cipher
from Crypto.Cipher._mode_gcm import _create_gcm_cipher
from Crypto.Cipher._mode_ocb import _create_ocb_cipher
_modes = { 1:_create_ecb_cipher,
2:_create_cbc_cipher,
3:_create_cfb_cipher,
5:_create_ofb_cipher,
6:_create_ctr_cipher,
7:_create_openpgp_cipher,
9:_create_eax_cipher
}
_extra_modes = { 8:_create_ccm_cipher,
10:_create_siv_cipher,
11:_create_gcm_cipher,
12:_create_ocb_cipher
}
def _create_cipher(factory, key, mode, *args, **kwargs):
kwargs["key"] = key
modes = dict(_modes)
if kwargs.pop("add_aes_modes", False):
modes.update(_extra_modes)
if not mode in modes:
raise ValueError("Mode not supported")
if args:
if mode in (8, 9, 10, 11, 12):
if len(args) > 1:
raise TypeError("Too many arguments for this mode")
kwargs["nonce"] = args[0]
elif mode in (2, 3, 5, 7):
if len(args) > 1:
raise TypeError("Too many arguments for this mode")
kwargs["IV"] = args[0]
elif mode == 6:
if len(args) > 0:
raise TypeError("Too many arguments for this mode")
elif mode == 1:
raise TypeError("IV is not meaningful for the ECB mode")
return modes[mode](factory, **kwargs)

View File

@ -0,0 +1,293 @@
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
"""
Ciphertext Block Chaining (CBC) mode.
"""
__all__ = ['CbcMode']
from Crypto.Util.py3compat import _copy_bytes
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer,
create_string_buffer, get_raw_buffer,
SmartPointer, c_size_t, c_uint8_ptr,
is_writeable_buffer)
from Crypto.Random import get_random_bytes
raw_cbc_lib = load_pycryptodome_raw_lib("Crypto.Cipher._raw_cbc", """
int CBC_start_operation(void *cipher,
const uint8_t iv[],
size_t iv_len,
void **pResult);
int CBC_encrypt(void *cbcState,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int CBC_decrypt(void *cbcState,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int CBC_stop_operation(void *state);
"""
)
class CbcMode(object):
"""*Cipher-Block Chaining (CBC)*.
Each of the ciphertext blocks depends on the current
and all previous plaintext blocks.
An Initialization Vector (*IV*) is required.
See `NIST SP800-38A`_ , Section 6.2 .
.. _`NIST SP800-38A` : http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
:undocumented: __init__
"""
def __init__(self, block_cipher, iv):
"""Create a new block cipher, configured in CBC mode.
:Parameters:
block_cipher : C pointer
A smart pointer to the low-level block cipher instance.
iv : bytes/bytearray/memoryview
The initialization vector to use for encryption or decryption.
It is as long as the cipher block.
**The IV must be unpredictable**. Ideally it is picked randomly.
Reusing the *IV* for encryptions performed with the same key
compromises confidentiality.
"""
self._state = VoidPointer()
result = raw_cbc_lib.CBC_start_operation(block_cipher.get(),
c_uint8_ptr(iv),
c_size_t(len(iv)),
self._state.address_of())
if result:
raise ValueError("Error %d while instantiating the CBC mode"
% result)
# Ensure that object disposal of this Python object will (eventually)
# free the memory allocated by the raw library for the cipher mode
self._state = SmartPointer(self._state.get(),
raw_cbc_lib.CBC_stop_operation)
# Memory allocated for the underlying block cipher is now owed
# by the cipher mode
block_cipher.release()
self.block_size = len(iv)
"""The block size of the underlying cipher, in bytes."""
self.iv = _copy_bytes(None, None, iv)
"""The Initialization Vector originally used to create the object.
The value does not change."""
self.IV = self.iv
"""Alias for `iv`"""
self._next = [ self.encrypt, self.decrypt ]
def encrypt(self, plaintext, output=None):
"""Encrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have encrypted a message
you cannot encrypt (or decrypt) another message using the same
object.
The data to encrypt can be broken up in two or
more pieces and `encrypt` can be called multiple times.
That is, the statement:
>>> c.encrypt(a) + c.encrypt(b)
is equivalent to:
>>> c.encrypt(a+b)
That also means that you cannot reuse an object for encrypting
or decrypting other data with the same key.
This function does not add any padding to the plaintext.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
Its lenght must be multiple of the cipher block size.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
If ``output`` is ``None``, the ciphertext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.encrypt not in self._next:
raise TypeError("encrypt() cannot be called after decrypt()")
self._next = [ self.encrypt ]
if output is None:
ciphertext = create_string_buffer(len(plaintext))
else:
ciphertext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(plaintext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = raw_cbc_lib.CBC_encrypt(self._state.get(),
c_uint8_ptr(plaintext),
c_uint8_ptr(ciphertext),
c_size_t(len(plaintext)))
if result:
if result == 3:
raise ValueError("Data must be padded to %d byte boundary in CBC mode" % self.block_size)
raise ValueError("Error %d while encrypting in CBC mode" % result)
if output is None:
return get_raw_buffer(ciphertext)
else:
return None
def decrypt(self, ciphertext, output=None):
"""Decrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have decrypted a message
you cannot decrypt (or encrypt) another message with the same
object.
The data to decrypt can be broken up in two or
more pieces and `decrypt` can be called multiple times.
That is, the statement:
>>> c.decrypt(a) + c.decrypt(b)
is equivalent to:
>>> c.decrypt(a+b)
This function does not remove any padding from the plaintext.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
Its length must be multiple of the cipher block size.
:Keywords:
output : bytearray/memoryview
The location where the plaintext must be written to.
If ``None``, the plaintext is returned.
:Return:
If ``output`` is ``None``, the plaintext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.decrypt not in self._next:
raise TypeError("decrypt() cannot be called after encrypt()")
self._next = [ self.decrypt ]
if output is None:
plaintext = create_string_buffer(len(ciphertext))
else:
plaintext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(ciphertext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = raw_cbc_lib.CBC_decrypt(self._state.get(),
c_uint8_ptr(ciphertext),
c_uint8_ptr(plaintext),
c_size_t(len(ciphertext)))
if result:
if result == 3:
raise ValueError("Data must be padded to %d byte boundary in CBC mode" % self.block_size)
raise ValueError("Error %d while decrypting in CBC mode" % result)
if output is None:
return get_raw_buffer(plaintext)
else:
return None
def _create_cbc_cipher(factory, **kwargs):
"""Instantiate a cipher object that performs CBC encryption/decryption.
:Parameters:
factory : module
The underlying block cipher, a module from ``Crypto.Cipher``.
:Keywords:
iv : bytes/bytearray/memoryview
The IV to use for CBC.
IV : bytes/bytearray/memoryview
Alias for ``iv``.
Any other keyword will be passed to the underlying block cipher.
See the relevant documentation for details (at least ``key`` will need
to be present).
"""
cipher_state = factory._create_base_cipher(kwargs)
iv = kwargs.pop("IV", None)
IV = kwargs.pop("iv", None)
if (None, None) == (iv, IV):
iv = get_random_bytes(factory.block_size)
if iv is not None:
if IV is not None:
raise TypeError("You must either use 'iv' or 'IV', not both")
else:
iv = IV
if len(iv) != factory.block_size:
raise ValueError("Incorrect IV length (it must be %d bytes long)" %
factory.block_size)
if kwargs:
raise TypeError("Unknown parameters for CBC: %s" % str(kwargs))
return CbcMode(cipher_state, iv)

View File

@ -0,0 +1,25 @@
from typing import Union, overload
from Crypto.Util._raw_api import SmartPointer
Buffer = Union[bytes, bytearray, memoryview]
__all__ = ['CbcMode']
class CbcMode(object):
block_size: int
iv: Buffer
IV: Buffer
def __init__(self,
block_cipher: SmartPointer,
iv: Buffer) -> None: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...

View File

@ -0,0 +1,650 @@
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
"""
Counter with CBC-MAC (CCM) mode.
"""
__all__ = ['CcmMode']
import struct
from binascii import unhexlify
from Crypto.Util.py3compat import (byte_string, bord,
_copy_bytes)
from Crypto.Util._raw_api import is_writeable_buffer
from Crypto.Util.strxor import strxor
from Crypto.Util.number import long_to_bytes
from Crypto.Hash import BLAKE2s
from Crypto.Random import get_random_bytes
def enum(**enums):
return type('Enum', (), enums)
MacStatus = enum(NOT_STARTED=0, PROCESSING_AUTH_DATA=1, PROCESSING_PLAINTEXT=2)
class CcmMode(object):
"""Counter with CBC-MAC (CCM).
This is an Authenticated Encryption with Associated Data (`AEAD`_) mode.
It provides both confidentiality and authenticity.
The header of the message may be left in the clear, if needed, and it will
still be subject to authentication. The decryption step tells the receiver
if the message comes from a source that really knowns the secret key.
Additionally, decryption detects if any part of the message - including the
header - has been modified or corrupted.
This mode requires a nonce. The nonce shall never repeat for two
different messages encrypted with the same key, but it does not need
to be random.
Note that there is a trade-off between the size of the nonce and the
maximum size of a single message you can encrypt.
It is important to use a large nonce if the key is reused across several
messages and the nonce is chosen randomly.
It is acceptable to us a short nonce if the key is only used a few times or
if the nonce is taken from a counter.
The following table shows the trade-off when the nonce is chosen at
random. The column on the left shows how many messages it takes
for the keystream to repeat **on average**. In practice, you will want to
stop using the key way before that.
+--------------------+---------------+-------------------+
| Avg. # of messages | nonce | Max. message |
| before keystream | size | size |
| repeats | (bytes) | (bytes) |
+====================+===============+===================+
| 2^52 | 13 | 64K |
+--------------------+---------------+-------------------+
| 2^48 | 12 | 16M |
+--------------------+---------------+-------------------+
| 2^44 | 11 | 4G |
+--------------------+---------------+-------------------+
| 2^40 | 10 | 1T |
+--------------------+---------------+-------------------+
| 2^36 | 9 | 64P |
+--------------------+---------------+-------------------+
| 2^32 | 8 | 16E |
+--------------------+---------------+-------------------+
This mode is only available for ciphers that operate on 128 bits blocks
(e.g. AES but not TDES).
See `NIST SP800-38C`_ or RFC3610_.
.. _`NIST SP800-38C`: http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C.pdf
.. _RFC3610: https://tools.ietf.org/html/rfc3610
.. _AEAD: http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-encryption.html
:undocumented: __init__
"""
def __init__(self, factory, key, nonce, mac_len, msg_len, assoc_len,
cipher_params):
self.block_size = factory.block_size
"""The block size of the underlying cipher, in bytes."""
self.nonce = _copy_bytes(None, None, nonce)
"""The nonce used for this cipher instance"""
self._factory = factory
self._key = _copy_bytes(None, None, key)
self._mac_len = mac_len
self._msg_len = msg_len
self._assoc_len = assoc_len
self._cipher_params = cipher_params
self._mac_tag = None # Cache for MAC tag
if self.block_size != 16:
raise ValueError("CCM mode is only available for ciphers"
" that operate on 128 bits blocks")
# MAC tag length (Tlen)
if mac_len not in (4, 6, 8, 10, 12, 14, 16):
raise ValueError("Parameter 'mac_len' must be even"
" and in the range 4..16 (not %d)" % mac_len)
# Nonce value
if not (nonce and 7 <= len(nonce) <= 13):
raise ValueError("Length of parameter 'nonce' must be"
" in the range 7..13 bytes")
# Create MAC object (the tag will be the last block
# bytes worth of ciphertext)
self._mac = self._factory.new(key,
factory.MODE_CBC,
iv=b'\x00' * 16,
**cipher_params)
self._mac_status = MacStatus.NOT_STARTED
self._t = None
# Allowed transitions after initialization
self._next = [self.update, self.encrypt, self.decrypt,
self.digest, self.verify]
# Cumulative lengths
self._cumul_assoc_len = 0
self._cumul_msg_len = 0
# Cache for unaligned associated data/plaintext.
# This is a list with byte strings, but when the MAC starts,
# it will become a binary string no longer than the block size.
self._cache = []
# Start CTR cipher, by formatting the counter (A.3)
q = 15 - len(nonce) # length of Q, the encoded message length
self._cipher = self._factory.new(key,
self._factory.MODE_CTR,
nonce=struct.pack("B", q - 1) + self.nonce,
**cipher_params)
# S_0, step 6 in 6.1 for j=0
self._s_0 = self._cipher.encrypt(b'\x00' * 16)
# Try to start the MAC
if None not in (assoc_len, msg_len):
self._start_mac()
def _start_mac(self):
assert(self._mac_status == MacStatus.NOT_STARTED)
assert(None not in (self._assoc_len, self._msg_len))
assert(isinstance(self._cache, list))
# Formatting control information and nonce (A.2.1)
q = 15 - len(self.nonce) # length of Q, the encoded message length
flags = (64 * (self._assoc_len > 0) + 8 * ((self._mac_len - 2) // 2) +
(q - 1))
b_0 = struct.pack("B", flags) + self.nonce + long_to_bytes(self._msg_len, q)
# Formatting associated data (A.2.2)
# Encoded 'a' is concatenated with the associated data 'A'
assoc_len_encoded = b''
if self._assoc_len > 0:
if self._assoc_len < (2 ** 16 - 2 ** 8):
enc_size = 2
elif self._assoc_len < (2 ** 32):
assoc_len_encoded = b'\xFF\xFE'
enc_size = 4
else:
assoc_len_encoded = b'\xFF\xFF'
enc_size = 8
assoc_len_encoded += long_to_bytes(self._assoc_len, enc_size)
# b_0 and assoc_len_encoded must be processed first
self._cache.insert(0, b_0)
self._cache.insert(1, assoc_len_encoded)
# Process all the data cached so far
first_data_to_mac = b"".join(self._cache)
self._cache = b""
self._mac_status = MacStatus.PROCESSING_AUTH_DATA
self._update(first_data_to_mac)
def _pad_cache_and_update(self):
assert(self._mac_status != MacStatus.NOT_STARTED)
assert(len(self._cache) < self.block_size)
# Associated data is concatenated with the least number
# of zero bytes (possibly none) to reach alignment to
# the 16 byte boundary (A.2.3)
len_cache = len(self._cache)
if len_cache > 0:
self._update(b'\x00' * (self.block_size - len_cache))
def update(self, assoc_data):
"""Protect associated data
If there is any associated data, the caller has to invoke
this function one or more times, before using
``decrypt`` or ``encrypt``.
By *associated data* it is meant any data (e.g. packet headers) that
will not be encrypted and will be transmitted in the clear.
However, the receiver is still able to detect any modification to it.
In CCM, the *associated data* is also called
*additional authenticated data* (AAD).
If there is no associated data, this method must not be called.
The caller may split associated data in segments of any size, and
invoke this method multiple times, each time with the next segment.
:Parameters:
assoc_data : bytes/bytearray/memoryview
A piece of associated data. There are no restrictions on its size.
"""
if self.update not in self._next:
raise TypeError("update() can only be called"
" immediately after initialization")
self._next = [self.update, self.encrypt, self.decrypt,
self.digest, self.verify]
self._cumul_assoc_len += len(assoc_data)
if self._assoc_len is not None and \
self._cumul_assoc_len > self._assoc_len:
raise ValueError("Associated data is too long")
self._update(assoc_data)
return self
def _update(self, assoc_data_pt=b""):
"""Update the MAC with associated data or plaintext
(without FSM checks)"""
# If MAC has not started yet, we just park the data into a list.
# If the data is mutable, we create a copy and store that instead.
if self._mac_status == MacStatus.NOT_STARTED:
if is_writeable_buffer(assoc_data_pt):
assoc_data_pt = _copy_bytes(None, None, assoc_data_pt)
self._cache.append(assoc_data_pt)
return
assert(len(self._cache) < self.block_size)
if len(self._cache) > 0:
filler = min(self.block_size - len(self._cache),
len(assoc_data_pt))
self._cache += _copy_bytes(None, filler, assoc_data_pt)
assoc_data_pt = _copy_bytes(filler, None, assoc_data_pt)
if len(self._cache) < self.block_size:
return
# The cache is exactly one block
self._t = self._mac.encrypt(self._cache)
self._cache = b""
update_len = len(assoc_data_pt) // self.block_size * self.block_size
self._cache = _copy_bytes(update_len, None, assoc_data_pt)
if update_len > 0:
self._t = self._mac.encrypt(assoc_data_pt[:update_len])[-16:]
def encrypt(self, plaintext, output=None):
"""Encrypt data with the key set at initialization.
A cipher object is stateful: once you have encrypted a message
you cannot encrypt (or decrypt) another message using the same
object.
This method can be called only **once** if ``msg_len`` was
not passed at initialization.
If ``msg_len`` was given, the data to encrypt can be broken
up in two or more pieces and `encrypt` can be called
multiple times.
That is, the statement:
>>> c.encrypt(a) + c.encrypt(b)
is equivalent to:
>>> c.encrypt(a+b)
This function does not add any padding to the plaintext.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
If ``output`` is ``None``, the ciphertext as ``bytes``.
Otherwise, ``None``.
"""
if self.encrypt not in self._next:
raise TypeError("encrypt() can only be called after"
" initialization or an update()")
self._next = [self.encrypt, self.digest]
# No more associated data allowed from now
if self._assoc_len is None:
assert(isinstance(self._cache, list))
self._assoc_len = sum([len(x) for x in self._cache])
if self._msg_len is not None:
self._start_mac()
else:
if self._cumul_assoc_len < self._assoc_len:
raise ValueError("Associated data is too short")
# Only once piece of plaintext accepted if message length was
# not declared in advance
if self._msg_len is None:
self._msg_len = len(plaintext)
self._start_mac()
self._next = [self.digest]
self._cumul_msg_len += len(plaintext)
if self._cumul_msg_len > self._msg_len:
raise ValueError("Message is too long")
if self._mac_status == MacStatus.PROCESSING_AUTH_DATA:
# Associated data is concatenated with the least number
# of zero bytes (possibly none) to reach alignment to
# the 16 byte boundary (A.2.3)
self._pad_cache_and_update()
self._mac_status = MacStatus.PROCESSING_PLAINTEXT
self._update(plaintext)
return self._cipher.encrypt(plaintext, output=output)
def decrypt(self, ciphertext, output=None):
"""Decrypt data with the key set at initialization.
A cipher object is stateful: once you have decrypted a message
you cannot decrypt (or encrypt) another message with the same
object.
This method can be called only **once** if ``msg_len`` was
not passed at initialization.
If ``msg_len`` was given, the data to decrypt can be
broken up in two or more pieces and `decrypt` can be
called multiple times.
That is, the statement:
>>> c.decrypt(a) + c.decrypt(b)
is equivalent to:
>>> c.decrypt(a+b)
This function does not remove any padding from the plaintext.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the plaintext must be written to.
If ``None``, the plaintext is returned.
:Return:
If ``output`` is ``None``, the plaintext as ``bytes``.
Otherwise, ``None``.
"""
if self.decrypt not in self._next:
raise TypeError("decrypt() can only be called"
" after initialization or an update()")
self._next = [self.decrypt, self.verify]
# No more associated data allowed from now
if self._assoc_len is None:
assert(isinstance(self._cache, list))
self._assoc_len = sum([len(x) for x in self._cache])
if self._msg_len is not None:
self._start_mac()
else:
if self._cumul_assoc_len < self._assoc_len:
raise ValueError("Associated data is too short")
# Only once piece of ciphertext accepted if message length was
# not declared in advance
if self._msg_len is None:
self._msg_len = len(ciphertext)
self._start_mac()
self._next = [self.verify]
self._cumul_msg_len += len(ciphertext)
if self._cumul_msg_len > self._msg_len:
raise ValueError("Message is too long")
if self._mac_status == MacStatus.PROCESSING_AUTH_DATA:
# Associated data is concatenated with the least number
# of zero bytes (possibly none) to reach alignment to
# the 16 byte boundary (A.2.3)
self._pad_cache_and_update()
self._mac_status = MacStatus.PROCESSING_PLAINTEXT
# Encrypt is equivalent to decrypt with the CTR mode
plaintext = self._cipher.encrypt(ciphertext, output=output)
if output is None:
self._update(plaintext)
else:
self._update(output)
return plaintext
def digest(self):
"""Compute the *binary* MAC tag.
The caller invokes this function at the very end.
This method returns the MAC that shall be sent to the receiver,
together with the ciphertext.
:Return: the MAC, as a byte string.
"""
if self.digest not in self._next:
raise TypeError("digest() cannot be called when decrypting"
" or validating a message")
self._next = [self.digest]
return self._digest()
def _digest(self):
if self._mac_tag:
return self._mac_tag
if self._assoc_len is None:
assert(isinstance(self._cache, list))
self._assoc_len = sum([len(x) for x in self._cache])
if self._msg_len is not None:
self._start_mac()
else:
if self._cumul_assoc_len < self._assoc_len:
raise ValueError("Associated data is too short")
if self._msg_len is None:
self._msg_len = 0
self._start_mac()
if self._cumul_msg_len != self._msg_len:
raise ValueError("Message is too short")
# Both associated data and payload are concatenated with the least
# number of zero bytes (possibly none) that align it to the
# 16 byte boundary (A.2.2 and A.2.3)
self._pad_cache_and_update()
# Step 8 in 6.1 (T xor MSB_Tlen(S_0))
self._mac_tag = strxor(self._t, self._s_0)[:self._mac_len]
return self._mac_tag
def hexdigest(self):
"""Compute the *printable* MAC tag.
This method is like `digest`.
:Return: the MAC, as a hexadecimal string.
"""
return "".join(["%02x" % bord(x) for x in self.digest()])
def verify(self, received_mac_tag):
"""Validate the *binary* MAC tag.
The caller invokes this function at the very end.
This method checks if the decrypted message is indeed valid
(that is, if the key is correct) and it has not been
tampered with while in transit.
:Parameters:
received_mac_tag : bytes/bytearray/memoryview
This is the *binary* MAC, as received from the sender.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
if self.verify not in self._next:
raise TypeError("verify() cannot be called"
" when encrypting a message")
self._next = [self.verify]
self._digest()
secret = get_random_bytes(16)
mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=self._mac_tag)
mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=received_mac_tag)
if mac1.digest() != mac2.digest():
raise ValueError("MAC check failed")
def hexverify(self, hex_mac_tag):
"""Validate the *printable* MAC tag.
This method is like `verify`.
:Parameters:
hex_mac_tag : string
This is the *printable* MAC, as received from the sender.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
self.verify(unhexlify(hex_mac_tag))
def encrypt_and_digest(self, plaintext, output=None):
"""Perform encrypt() and digest() in one step.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
a tuple with two items:
- the ciphertext, as ``bytes``
- the MAC tag, as ``bytes``
The first item becomes ``None`` when the ``output`` parameter
specified a location for the result.
"""
return self.encrypt(plaintext, output=output), self.digest()
def decrypt_and_verify(self, ciphertext, received_mac_tag, output=None):
"""Perform decrypt() and verify() in one step.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
received_mac_tag : bytes/bytearray/memoryview
This is the *binary* MAC, as received from the sender.
:Keywords:
output : bytearray/memoryview
The location where the plaintext must be written to.
If ``None``, the plaintext is returned.
:Return: the plaintext as ``bytes`` or ``None`` when the ``output``
parameter specified a location for the result.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
plaintext = self.decrypt(ciphertext, output=output)
self.verify(received_mac_tag)
return plaintext
def _create_ccm_cipher(factory, **kwargs):
"""Create a new block cipher, configured in CCM mode.
:Parameters:
factory : module
A symmetric cipher module from `Crypto.Cipher` (like
`Crypto.Cipher.AES`).
:Keywords:
key : bytes/bytearray/memoryview
The secret key to use in the symmetric cipher.
nonce : bytes/bytearray/memoryview
A value that must never be reused for any other encryption.
Its length must be in the range ``[7..13]``.
11 or 12 bytes are reasonable values in general. Bear in
mind that with CCM there is a trade-off between nonce length and
maximum message size.
If not specified, a 11 byte long random string is used.
mac_len : integer
Length of the MAC, in bytes. It must be even and in
the range ``[4..16]``. The default is 16.
msg_len : integer
Length of the message to (de)cipher.
If not specified, ``encrypt`` or ``decrypt`` may only be called once.
assoc_len : integer
Length of the associated data.
If not specified, all data is internally buffered.
"""
try:
key = key = kwargs.pop("key")
except KeyError as e:
raise TypeError("Missing parameter: " + str(e))
nonce = kwargs.pop("nonce", None) # N
if nonce is None:
nonce = get_random_bytes(11)
mac_len = kwargs.pop("mac_len", factory.block_size)
msg_len = kwargs.pop("msg_len", None) # p
assoc_len = kwargs.pop("assoc_len", None) # a
cipher_params = dict(kwargs)
return CcmMode(factory, key, nonce, mac_len, msg_len,
assoc_len, cipher_params)

View File

@ -0,0 +1,47 @@
from types import ModuleType
from typing import Union, overload, Dict, Tuple, Optional
Buffer = Union[bytes, bytearray, memoryview]
__all__ = ['CcmMode']
class CcmMode(object):
block_size: int
nonce: bytes
def __init__(self,
factory: ModuleType,
key: Buffer,
nonce: Buffer,
mac_len: int,
msg_len: int,
assoc_len: int,
cipher_params: Dict) -> None: ...
def update(self, assoc_data: Buffer) -> CcmMode: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
def digest(self) -> bytes: ...
def hexdigest(self) -> str: ...
def verify(self, received_mac_tag: Buffer) -> None: ...
def hexverify(self, hex_mac_tag: str) -> None: ...
@overload
def encrypt_and_digest(self,
plaintext: Buffer) -> Tuple[bytes, bytes]: ...
@overload
def encrypt_and_digest(self,
plaintext: Buffer,
output: Buffer) -> Tuple[None, bytes]: ...
def decrypt_and_verify(self,
ciphertext: Buffer,
received_mac_tag: Buffer,
output: Optional[Union[bytearray, memoryview]] = ...) -> bytes: ...

View File

@ -0,0 +1,293 @@
# -*- coding: utf-8 -*-
#
# Cipher/mode_cfb.py : CFB mode
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""
Counter Feedback (CFB) mode.
"""
__all__ = ['CfbMode']
from Crypto.Util.py3compat import _copy_bytes
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer,
create_string_buffer, get_raw_buffer,
SmartPointer, c_size_t, c_uint8_ptr,
is_writeable_buffer)
from Crypto.Random import get_random_bytes
raw_cfb_lib = load_pycryptodome_raw_lib("Crypto.Cipher._raw_cfb","""
int CFB_start_operation(void *cipher,
const uint8_t iv[],
size_t iv_len,
size_t segment_len, /* In bytes */
void **pResult);
int CFB_encrypt(void *cfbState,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int CFB_decrypt(void *cfbState,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int CFB_stop_operation(void *state);"""
)
class CfbMode(object):
"""*Cipher FeedBack (CFB)*.
This mode is similar to CFB, but it transforms
the underlying block cipher into a stream cipher.
Plaintext and ciphertext are processed in *segments*
of **s** bits. The mode is therefore sometimes
labelled **s**-bit CFB.
An Initialization Vector (*IV*) is required.
See `NIST SP800-38A`_ , Section 6.3.
.. _`NIST SP800-38A` : http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
:undocumented: __init__
"""
def __init__(self, block_cipher, iv, segment_size):
"""Create a new block cipher, configured in CFB mode.
:Parameters:
block_cipher : C pointer
A smart pointer to the low-level block cipher instance.
iv : bytes/bytearray/memoryview
The initialization vector to use for encryption or decryption.
It is as long as the cipher block.
**The IV must be unpredictable**. Ideally it is picked randomly.
Reusing the *IV* for encryptions performed with the same key
compromises confidentiality.
segment_size : integer
The number of bytes the plaintext and ciphertext are segmented in.
"""
self._state = VoidPointer()
result = raw_cfb_lib.CFB_start_operation(block_cipher.get(),
c_uint8_ptr(iv),
c_size_t(len(iv)),
c_size_t(segment_size),
self._state.address_of())
if result:
raise ValueError("Error %d while instantiating the CFB mode" % result)
# Ensure that object disposal of this Python object will (eventually)
# free the memory allocated by the raw library for the cipher mode
self._state = SmartPointer(self._state.get(),
raw_cfb_lib.CFB_stop_operation)
# Memory allocated for the underlying block cipher is now owed
# by the cipher mode
block_cipher.release()
self.block_size = len(iv)
"""The block size of the underlying cipher, in bytes."""
self.iv = _copy_bytes(None, None, iv)
"""The Initialization Vector originally used to create the object.
The value does not change."""
self.IV = self.iv
"""Alias for `iv`"""
self._next = [ self.encrypt, self.decrypt ]
def encrypt(self, plaintext, output=None):
"""Encrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have encrypted a message
you cannot encrypt (or decrypt) another message using the same
object.
The data to encrypt can be broken up in two or
more pieces and `encrypt` can be called multiple times.
That is, the statement:
>>> c.encrypt(a) + c.encrypt(b)
is equivalent to:
>>> c.encrypt(a+b)
This function does not add any padding to the plaintext.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
If ``output`` is ``None``, the ciphertext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.encrypt not in self._next:
raise TypeError("encrypt() cannot be called after decrypt()")
self._next = [ self.encrypt ]
if output is None:
ciphertext = create_string_buffer(len(plaintext))
else:
ciphertext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(plaintext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = raw_cfb_lib.CFB_encrypt(self._state.get(),
c_uint8_ptr(plaintext),
c_uint8_ptr(ciphertext),
c_size_t(len(plaintext)))
if result:
raise ValueError("Error %d while encrypting in CFB mode" % result)
if output is None:
return get_raw_buffer(ciphertext)
else:
return None
def decrypt(self, ciphertext, output=None):
"""Decrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have decrypted a message
you cannot decrypt (or encrypt) another message with the same
object.
The data to decrypt can be broken up in two or
more pieces and `decrypt` can be called multiple times.
That is, the statement:
>>> c.decrypt(a) + c.decrypt(b)
is equivalent to:
>>> c.decrypt(a+b)
This function does not remove any padding from the plaintext.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the plaintext must be written to.
If ``None``, the plaintext is returned.
:Return:
If ``output`` is ``None``, the plaintext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.decrypt not in self._next:
raise TypeError("decrypt() cannot be called after encrypt()")
self._next = [ self.decrypt ]
if output is None:
plaintext = create_string_buffer(len(ciphertext))
else:
plaintext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(ciphertext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = raw_cfb_lib.CFB_decrypt(self._state.get(),
c_uint8_ptr(ciphertext),
c_uint8_ptr(plaintext),
c_size_t(len(ciphertext)))
if result:
raise ValueError("Error %d while decrypting in CFB mode" % result)
if output is None:
return get_raw_buffer(plaintext)
else:
return None
def _create_cfb_cipher(factory, **kwargs):
"""Instantiate a cipher object that performs CFB encryption/decryption.
:Parameters:
factory : module
The underlying block cipher, a module from ``Crypto.Cipher``.
:Keywords:
iv : bytes/bytearray/memoryview
The IV to use for CFB.
IV : bytes/bytearray/memoryview
Alias for ``iv``.
segment_size : integer
The number of bit the plaintext and ciphertext are segmented in.
If not present, the default is 8.
Any other keyword will be passed to the underlying block cipher.
See the relevant documentation for details (at least ``key`` will need
to be present).
"""
cipher_state = factory._create_base_cipher(kwargs)
iv = kwargs.pop("IV", None)
IV = kwargs.pop("iv", None)
if (None, None) == (iv, IV):
iv = get_random_bytes(factory.block_size)
if iv is not None:
if IV is not None:
raise TypeError("You must either use 'iv' or 'IV', not both")
else:
iv = IV
if len(iv) != factory.block_size:
raise ValueError("Incorrect IV length (it must be %d bytes long)" %
factory.block_size)
segment_size_bytes, rem = divmod(kwargs.pop("segment_size", 8), 8)
if segment_size_bytes == 0 or rem != 0:
raise ValueError("'segment_size' must be positive and multiple of 8 bits")
if kwargs:
raise TypeError("Unknown parameters for CFB: %s" % str(kwargs))
return CfbMode(cipher_state, iv, segment_size_bytes)

View File

@ -0,0 +1,26 @@
from typing import Union, overload
from Crypto.Util._raw_api import SmartPointer
Buffer = Union[bytes, bytearray, memoryview]
__all__ = ['CfbMode']
class CfbMode(object):
block_size: int
iv: Buffer
IV: Buffer
def __init__(self,
block_cipher: SmartPointer,
iv: Buffer,
segment_size: int) -> None: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...

View File

@ -0,0 +1,393 @@
# -*- coding: utf-8 -*-
#
# Cipher/mode_ctr.py : CTR mode
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""
Counter (CTR) mode.
"""
__all__ = ['CtrMode']
import struct
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer,
create_string_buffer, get_raw_buffer,
SmartPointer, c_size_t, c_uint8_ptr,
is_writeable_buffer)
from Crypto.Random import get_random_bytes
from Crypto.Util.py3compat import _copy_bytes, is_native_int
from Crypto.Util.number import long_to_bytes
raw_ctr_lib = load_pycryptodome_raw_lib("Crypto.Cipher._raw_ctr", """
int CTR_start_operation(void *cipher,
uint8_t initialCounterBlock[],
size_t initialCounterBlock_len,
size_t prefix_len,
unsigned counter_len,
unsigned littleEndian,
void **pResult);
int CTR_encrypt(void *ctrState,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int CTR_decrypt(void *ctrState,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int CTR_stop_operation(void *ctrState);"""
)
class CtrMode(object):
"""*CounTeR (CTR)* mode.
This mode is very similar to ECB, in that
encryption of one block is done independently of all other blocks.
Unlike ECB, the block *position* contributes to the encryption
and no information leaks about symbol frequency.
Each message block is associated to a *counter* which
must be unique across all messages that get encrypted
with the same key (not just within the same message).
The counter is as big as the block size.
Counters can be generated in several ways. The most
straightword one is to choose an *initial counter block*
(which can be made public, similarly to the *IV* for the
other modes) and increment its lowest **m** bits by one
(modulo *2^m*) for each block. In most cases, **m** is
chosen to be half the block size.
See `NIST SP800-38A`_, Section 6.5 (for the mode) and
Appendix B (for how to manage the *initial counter block*).
.. _`NIST SP800-38A` : http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
:undocumented: __init__
"""
def __init__(self, block_cipher, initial_counter_block,
prefix_len, counter_len, little_endian):
"""Create a new block cipher, configured in CTR mode.
:Parameters:
block_cipher : C pointer
A smart pointer to the low-level block cipher instance.
initial_counter_block : bytes/bytearray/memoryview
The initial plaintext to use to generate the key stream.
It is as large as the cipher block, and it embeds
the initial value of the counter.
This value must not be reused.
It shall contain a nonce or a random component.
Reusing the *initial counter block* for encryptions
performed with the same key compromises confidentiality.
prefix_len : integer
The amount of bytes at the beginning of the counter block
that never change.
counter_len : integer
The length in bytes of the counter embedded in the counter
block.
little_endian : boolean
True if the counter in the counter block is an integer encoded
in little endian mode. If False, it is big endian.
"""
if len(initial_counter_block) == prefix_len + counter_len:
self.nonce = _copy_bytes(None, prefix_len, initial_counter_block)
"""Nonce; not available if there is a fixed suffix"""
self._state = VoidPointer()
result = raw_ctr_lib.CTR_start_operation(block_cipher.get(),
c_uint8_ptr(initial_counter_block),
c_size_t(len(initial_counter_block)),
c_size_t(prefix_len),
counter_len,
little_endian,
self._state.address_of())
if result:
raise ValueError("Error %X while instantiating the CTR mode"
% result)
# Ensure that object disposal of this Python object will (eventually)
# free the memory allocated by the raw library for the cipher mode
self._state = SmartPointer(self._state.get(),
raw_ctr_lib.CTR_stop_operation)
# Memory allocated for the underlying block cipher is now owed
# by the cipher mode
block_cipher.release()
self.block_size = len(initial_counter_block)
"""The block size of the underlying cipher, in bytes."""
self._next = [self.encrypt, self.decrypt]
def encrypt(self, plaintext, output=None):
"""Encrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have encrypted a message
you cannot encrypt (or decrypt) another message using the same
object.
The data to encrypt can be broken up in two or
more pieces and `encrypt` can be called multiple times.
That is, the statement:
>>> c.encrypt(a) + c.encrypt(b)
is equivalent to:
>>> c.encrypt(a+b)
This function does not add any padding to the plaintext.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
If ``output`` is ``None``, the ciphertext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.encrypt not in self._next:
raise TypeError("encrypt() cannot be called after decrypt()")
self._next = [self.encrypt]
if output is None:
ciphertext = create_string_buffer(len(plaintext))
else:
ciphertext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(plaintext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = raw_ctr_lib.CTR_encrypt(self._state.get(),
c_uint8_ptr(plaintext),
c_uint8_ptr(ciphertext),
c_size_t(len(plaintext)))
if result:
if result == 0x60002:
raise OverflowError("The counter has wrapped around in"
" CTR mode")
raise ValueError("Error %X while encrypting in CTR mode" % result)
if output is None:
return get_raw_buffer(ciphertext)
else:
return None
def decrypt(self, ciphertext, output=None):
"""Decrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have decrypted a message
you cannot decrypt (or encrypt) another message with the same
object.
The data to decrypt can be broken up in two or
more pieces and `decrypt` can be called multiple times.
That is, the statement:
>>> c.decrypt(a) + c.decrypt(b)
is equivalent to:
>>> c.decrypt(a+b)
This function does not remove any padding from the plaintext.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the plaintext must be written to.
If ``None``, the plaintext is returned.
:Return:
If ``output`` is ``None``, the plaintext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.decrypt not in self._next:
raise TypeError("decrypt() cannot be called after encrypt()")
self._next = [self.decrypt]
if output is None:
plaintext = create_string_buffer(len(ciphertext))
else:
plaintext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(ciphertext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = raw_ctr_lib.CTR_decrypt(self._state.get(),
c_uint8_ptr(ciphertext),
c_uint8_ptr(plaintext),
c_size_t(len(ciphertext)))
if result:
if result == 0x60002:
raise OverflowError("The counter has wrapped around in"
" CTR mode")
raise ValueError("Error %X while decrypting in CTR mode" % result)
if output is None:
return get_raw_buffer(plaintext)
else:
return None
def _create_ctr_cipher(factory, **kwargs):
"""Instantiate a cipher object that performs CTR encryption/decryption.
:Parameters:
factory : module
The underlying block cipher, a module from ``Crypto.Cipher``.
:Keywords:
nonce : bytes/bytearray/memoryview
The fixed part at the beginning of the counter block - the rest is
the counter number that gets increased when processing the next block.
The nonce must be such that no two messages are encrypted under the
same key and the same nonce.
The nonce must be shorter than the block size (it can have
zero length; the counter is then as long as the block).
If this parameter is not present, a random nonce will be created with
length equal to half the block size. No random nonce shorter than
64 bits will be created though - you must really think through all
security consequences of using such a short block size.
initial_value : posive integer or bytes/bytearray/memoryview
The initial value for the counter. If not present, the cipher will
start counting from 0. The value is incremented by one for each block.
The counter number is encoded in big endian mode.
counter : object
Instance of ``Crypto.Util.Counter``, which allows full customization
of the counter block. This parameter is incompatible to both ``nonce``
and ``initial_value``.
Any other keyword will be passed to the underlying block cipher.
See the relevant documentation for details (at least ``key`` will need
to be present).
"""
cipher_state = factory._create_base_cipher(kwargs)
counter = kwargs.pop("counter", None)
nonce = kwargs.pop("nonce", None)
initial_value = kwargs.pop("initial_value", None)
if kwargs:
raise TypeError("Invalid parameters for CTR mode: %s" % str(kwargs))
if counter is not None and (nonce, initial_value) != (None, None):
raise TypeError("'counter' and 'nonce'/'initial_value'"
" are mutually exclusive")
if counter is None:
# Crypto.Util.Counter is not used
if nonce is None:
if factory.block_size < 16:
raise TypeError("Impossible to create a safe nonce for short"
" block sizes")
nonce = get_random_bytes(factory.block_size // 2)
else:
if len(nonce) >= factory.block_size:
raise ValueError("Nonce is too long")
# What is not nonce is counter
counter_len = factory.block_size - len(nonce)
if initial_value is None:
initial_value = 0
if is_native_int(initial_value):
if (1 << (counter_len * 8)) - 1 < initial_value:
raise ValueError("Initial counter value is too large")
initial_counter_block = nonce + long_to_bytes(initial_value, counter_len)
else:
if len(initial_value) != counter_len:
raise ValueError("Incorrect length for counter byte string (%d bytes, expected %d)" % (len(initial_value), counter_len))
initial_counter_block = nonce + initial_value
return CtrMode(cipher_state,
initial_counter_block,
len(nonce), # prefix
counter_len,
False) # little_endian
# Crypto.Util.Counter is used
# 'counter' used to be a callable object, but now it is
# just a dictionary for backward compatibility.
_counter = dict(counter)
try:
counter_len = _counter.pop("counter_len")
prefix = _counter.pop("prefix")
suffix = _counter.pop("suffix")
initial_value = _counter.pop("initial_value")
little_endian = _counter.pop("little_endian")
except KeyError:
raise TypeError("Incorrect counter object"
" (use Crypto.Util.Counter.new)")
# Compute initial counter block
words = []
while initial_value > 0:
words.append(struct.pack('B', initial_value & 255))
initial_value >>= 8
words += [ b'\x00' ] * max(0, counter_len - len(words))
if not little_endian:
words.reverse()
initial_counter_block = prefix + b"".join(words) + suffix
if len(initial_counter_block) != factory.block_size:
raise ValueError("Size of the counter block (%d bytes) must match"
" block size (%d)" % (len(initial_counter_block),
factory.block_size))
return CtrMode(cipher_state, initial_counter_block,
len(prefix), counter_len, little_endian)

View File

@ -0,0 +1,27 @@
from typing import Union, overload
from Crypto.Util._raw_api import SmartPointer
Buffer = Union[bytes, bytearray, memoryview]
__all__ = ['CtrMode']
class CtrMode(object):
block_size: int
nonce: bytes
def __init__(self,
block_cipher: SmartPointer,
initial_counter_block: Buffer,
prefix_len: int,
counter_len: int,
little_endian: bool) -> None: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...

View File

@ -0,0 +1,408 @@
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
"""
EAX mode.
"""
__all__ = ['EaxMode']
import struct
from binascii import unhexlify
from Crypto.Util.py3compat import byte_string, bord, _copy_bytes
from Crypto.Util._raw_api import is_buffer
from Crypto.Util.strxor import strxor
from Crypto.Util.number import long_to_bytes, bytes_to_long
from Crypto.Hash import CMAC, BLAKE2s
from Crypto.Random import get_random_bytes
class EaxMode(object):
"""*EAX* mode.
This is an Authenticated Encryption with Associated Data
(`AEAD`_) mode. It provides both confidentiality and authenticity.
The header of the message may be left in the clear, if needed,
and it will still be subject to authentication.
The decryption step tells the receiver if the message comes
from a source that really knowns the secret key.
Additionally, decryption detects if any part of the message -
including the header - has been modified or corrupted.
This mode requires a *nonce*.
This mode is only available for ciphers that operate on 64 or
128 bits blocks.
There are no official standards defining EAX.
The implementation is based on `a proposal`__ that
was presented to NIST.
.. _AEAD: http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-encryption.html
.. __: http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax/eax-spec.pdf
:undocumented: __init__
"""
def __init__(self, factory, key, nonce, mac_len, cipher_params):
"""EAX cipher mode"""
self.block_size = factory.block_size
"""The block size of the underlying cipher, in bytes."""
self.nonce = _copy_bytes(None, None, nonce)
"""The nonce originally used to create the object."""
self._mac_len = mac_len
self._mac_tag = None # Cache for MAC tag
# Allowed transitions after initialization
self._next = [self.update, self.encrypt, self.decrypt,
self.digest, self.verify]
# MAC tag length
if not (4 <= self._mac_len <= self.block_size):
raise ValueError("Parameter 'mac_len' must not be larger than %d"
% self.block_size)
# Nonce cannot be empty and must be a byte string
if len(self.nonce) == 0:
raise ValueError("Nonce cannot be empty in EAX mode")
if not is_buffer(nonce):
raise TypeError("nonce must be bytes, bytearray or memoryview")
self._omac = [
CMAC.new(key,
b'\x00' * (self.block_size - 1) + struct.pack('B', i),
ciphermod=factory,
cipher_params=cipher_params)
for i in range(0, 3)
]
# Compute MAC of nonce
self._omac[0].update(self.nonce)
self._signer = self._omac[1]
# MAC of the nonce is also the initial counter for CTR encryption
counter_int = bytes_to_long(self._omac[0].digest())
self._cipher = factory.new(key,
factory.MODE_CTR,
initial_value=counter_int,
nonce=b"",
**cipher_params)
def update(self, assoc_data):
"""Protect associated data
If there is any associated data, the caller has to invoke
this function one or more times, before using
``decrypt`` or ``encrypt``.
By *associated data* it is meant any data (e.g. packet headers) that
will not be encrypted and will be transmitted in the clear.
However, the receiver is still able to detect any modification to it.
If there is no associated data, this method must not be called.
The caller may split associated data in segments of any size, and
invoke this method multiple times, each time with the next segment.
:Parameters:
assoc_data : bytes/bytearray/memoryview
A piece of associated data. There are no restrictions on its size.
"""
if self.update not in self._next:
raise TypeError("update() can only be called"
" immediately after initialization")
self._next = [self.update, self.encrypt, self.decrypt,
self.digest, self.verify]
self._signer.update(assoc_data)
return self
def encrypt(self, plaintext, output=None):
"""Encrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have encrypted a message
you cannot encrypt (or decrypt) another message using the same
object.
The data to encrypt can be broken up in two or
more pieces and `encrypt` can be called multiple times.
That is, the statement:
>>> c.encrypt(a) + c.encrypt(b)
is equivalent to:
>>> c.encrypt(a+b)
This function does not add any padding to the plaintext.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
If ``output`` is ``None``, the ciphertext as ``bytes``.
Otherwise, ``None``.
"""
if self.encrypt not in self._next:
raise TypeError("encrypt() can only be called after"
" initialization or an update()")
self._next = [self.encrypt, self.digest]
ct = self._cipher.encrypt(plaintext, output=output)
if output is None:
self._omac[2].update(ct)
else:
self._omac[2].update(output)
return ct
def decrypt(self, ciphertext, output=None):
"""Decrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have decrypted a message
you cannot decrypt (or encrypt) another message with the same
object.
The data to decrypt can be broken up in two or
more pieces and `decrypt` can be called multiple times.
That is, the statement:
>>> c.decrypt(a) + c.decrypt(b)
is equivalent to:
>>> c.decrypt(a+b)
This function does not remove any padding from the plaintext.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the plaintext must be written to.
If ``None``, the plaintext is returned.
:Return:
If ``output`` is ``None``, the plaintext as ``bytes``.
Otherwise, ``None``.
"""
if self.decrypt not in self._next:
raise TypeError("decrypt() can only be called"
" after initialization or an update()")
self._next = [self.decrypt, self.verify]
self._omac[2].update(ciphertext)
return self._cipher.decrypt(ciphertext, output=output)
def digest(self):
"""Compute the *binary* MAC tag.
The caller invokes this function at the very end.
This method returns the MAC that shall be sent to the receiver,
together with the ciphertext.
:Return: the MAC, as a byte string.
"""
if self.digest not in self._next:
raise TypeError("digest() cannot be called when decrypting"
" or validating a message")
self._next = [self.digest]
if not self._mac_tag:
tag = b'\x00' * self.block_size
for i in range(3):
tag = strxor(tag, self._omac[i].digest())
self._mac_tag = tag[:self._mac_len]
return self._mac_tag
def hexdigest(self):
"""Compute the *printable* MAC tag.
This method is like `digest`.
:Return: the MAC, as a hexadecimal string.
"""
return "".join(["%02x" % bord(x) for x in self.digest()])
def verify(self, received_mac_tag):
"""Validate the *binary* MAC tag.
The caller invokes this function at the very end.
This method checks if the decrypted message is indeed valid
(that is, if the key is correct) and it has not been
tampered with while in transit.
:Parameters:
received_mac_tag : bytes/bytearray/memoryview
This is the *binary* MAC, as received from the sender.
:Raises MacMismatchError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
if self.verify not in self._next:
raise TypeError("verify() cannot be called"
" when encrypting a message")
self._next = [self.verify]
if not self._mac_tag:
tag = b'\x00' * self.block_size
for i in range(3):
tag = strxor(tag, self._omac[i].digest())
self._mac_tag = tag[:self._mac_len]
secret = get_random_bytes(16)
mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=self._mac_tag)
mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=received_mac_tag)
if mac1.digest() != mac2.digest():
raise ValueError("MAC check failed")
def hexverify(self, hex_mac_tag):
"""Validate the *printable* MAC tag.
This method is like `verify`.
:Parameters:
hex_mac_tag : string
This is the *printable* MAC, as received from the sender.
:Raises MacMismatchError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
self.verify(unhexlify(hex_mac_tag))
def encrypt_and_digest(self, plaintext, output=None):
"""Perform encrypt() and digest() in one step.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
a tuple with two items:
- the ciphertext, as ``bytes``
- the MAC tag, as ``bytes``
The first item becomes ``None`` when the ``output`` parameter
specified a location for the result.
"""
return self.encrypt(plaintext, output=output), self.digest()
def decrypt_and_verify(self, ciphertext, received_mac_tag, output=None):
"""Perform decrypt() and verify() in one step.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
received_mac_tag : bytes/bytearray/memoryview
This is the *binary* MAC, as received from the sender.
:Keywords:
output : bytearray/memoryview
The location where the plaintext must be written to.
If ``None``, the plaintext is returned.
:Return: the plaintext as ``bytes`` or ``None`` when the ``output``
parameter specified a location for the result.
:Raises MacMismatchError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
pt = self.decrypt(ciphertext, output=output)
self.verify(received_mac_tag)
return pt
def _create_eax_cipher(factory, **kwargs):
"""Create a new block cipher, configured in EAX mode.
:Parameters:
factory : module
A symmetric cipher module from `Crypto.Cipher` (like
`Crypto.Cipher.AES`).
:Keywords:
key : bytes/bytearray/memoryview
The secret key to use in the symmetric cipher.
nonce : bytes/bytearray/memoryview
A value that must never be reused for any other encryption.
There are no restrictions on its length, but it is recommended to use
at least 16 bytes.
The nonce shall never repeat for two different messages encrypted with
the same key, but it does not need to be random.
If not specified, a 16 byte long random string is used.
mac_len : integer
Length of the MAC, in bytes. It must be no larger than the cipher
block bytes (which is the default).
"""
try:
key = kwargs.pop("key")
nonce = kwargs.pop("nonce", None)
if nonce is None:
nonce = get_random_bytes(16)
mac_len = kwargs.pop("mac_len", factory.block_size)
except KeyError as e:
raise TypeError("Missing parameter: " + str(e))
return EaxMode(factory, key, nonce, mac_len, kwargs)

View File

@ -0,0 +1,45 @@
from types import ModuleType
from typing import Any, Union, Tuple, Dict, overload, Optional
Buffer = Union[bytes, bytearray, memoryview]
__all__ = ['EaxMode']
class EaxMode(object):
block_size: int
nonce: bytes
def __init__(self,
factory: ModuleType,
key: Buffer,
nonce: Buffer,
mac_len: int,
cipher_params: Dict) -> None: ...
def update(self, assoc_data: Buffer) -> EaxMode: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
def digest(self) -> bytes: ...
def hexdigest(self) -> str: ...
def verify(self, received_mac_tag: Buffer) -> None: ...
def hexverify(self, hex_mac_tag: str) -> None: ...
@overload
def encrypt_and_digest(self,
plaintext: Buffer) -> Tuple[bytes, bytes]: ...
@overload
def encrypt_and_digest(self,
plaintext: Buffer,
output: Buffer) -> Tuple[None, bytes]: ...
def decrypt_and_verify(self,
ciphertext: Buffer,
received_mac_tag: Buffer,
output: Optional[Union[bytearray, memoryview]] = ...) -> bytes: ...

View File

@ -0,0 +1,218 @@
# -*- coding: utf-8 -*-
#
# Cipher/mode_ecb.py : ECB mode
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""
Electronic Code Book (ECB) mode.
"""
__all__ = [ 'EcbMode' ]
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
VoidPointer, create_string_buffer,
get_raw_buffer, SmartPointer,
c_size_t, c_uint8_ptr,
is_writeable_buffer)
raw_ecb_lib = load_pycryptodome_raw_lib("Crypto.Cipher._raw_ecb", """
int ECB_start_operation(void *cipher,
void **pResult);
int ECB_encrypt(void *ecbState,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int ECB_decrypt(void *ecbState,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int ECB_stop_operation(void *state);
"""
)
class EcbMode(object):
"""*Electronic Code Book (ECB)*.
This is the simplest encryption mode. Each of the plaintext blocks
is directly encrypted into a ciphertext block, independently of
any other block.
This mode is dangerous because it exposes frequency of symbols
in your plaintext. Other modes (e.g. *CBC*) should be used instead.
See `NIST SP800-38A`_ , Section 6.1.
.. _`NIST SP800-38A` : http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
:undocumented: __init__
"""
def __init__(self, block_cipher):
"""Create a new block cipher, configured in ECB mode.
:Parameters:
block_cipher : C pointer
A smart pointer to the low-level block cipher instance.
"""
self._state = VoidPointer()
result = raw_ecb_lib.ECB_start_operation(block_cipher.get(),
self._state.address_of())
if result:
raise ValueError("Error %d while instantiating the ECB mode"
% result)
# Ensure that object disposal of this Python object will (eventually)
# free the memory allocated by the raw library for the cipher
# mode
self._state = SmartPointer(self._state.get(),
raw_ecb_lib.ECB_stop_operation)
# Memory allocated for the underlying block cipher is now owned
# by the cipher mode
block_cipher.release()
def encrypt(self, plaintext, output=None):
"""Encrypt data with the key set at initialization.
The data to encrypt can be broken up in two or
more pieces and `encrypt` can be called multiple times.
That is, the statement:
>>> c.encrypt(a) + c.encrypt(b)
is equivalent to:
>>> c.encrypt(a+b)
This function does not add any padding to the plaintext.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
The length must be multiple of the cipher block length.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
If ``output`` is ``None``, the ciphertext is returned as ``bytes``.
Otherwise, ``None``.
"""
if output is None:
ciphertext = create_string_buffer(len(plaintext))
else:
ciphertext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(plaintext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = raw_ecb_lib.ECB_encrypt(self._state.get(),
c_uint8_ptr(plaintext),
c_uint8_ptr(ciphertext),
c_size_t(len(plaintext)))
if result:
if result == 3:
raise ValueError("Data must be aligned to block boundary in ECB mode")
raise ValueError("Error %d while encrypting in ECB mode" % result)
if output is None:
return get_raw_buffer(ciphertext)
else:
return None
def decrypt(self, ciphertext, output=None):
"""Decrypt data with the key set at initialization.
The data to decrypt can be broken up in two or
more pieces and `decrypt` can be called multiple times.
That is, the statement:
>>> c.decrypt(a) + c.decrypt(b)
is equivalent to:
>>> c.decrypt(a+b)
This function does not remove any padding from the plaintext.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
The length must be multiple of the cipher block length.
:Keywords:
output : bytearray/memoryview
The location where the plaintext must be written to.
If ``None``, the plaintext is returned.
:Return:
If ``output`` is ``None``, the plaintext is returned as ``bytes``.
Otherwise, ``None``.
"""
if output is None:
plaintext = create_string_buffer(len(ciphertext))
else:
plaintext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(ciphertext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = raw_ecb_lib.ECB_decrypt(self._state.get(),
c_uint8_ptr(ciphertext),
c_uint8_ptr(plaintext),
c_size_t(len(ciphertext)))
if result:
if result == 3:
raise ValueError("Data must be aligned to block boundary in ECB mode")
raise ValueError("Error %d while decrypting in ECB mode" % result)
if output is None:
return get_raw_buffer(plaintext)
else:
return None
def _create_ecb_cipher(factory, **kwargs):
"""Instantiate a cipher object that performs ECB encryption/decryption.
:Parameters:
factory : module
The underlying block cipher, a module from ``Crypto.Cipher``.
All keywords are passed to the underlying block cipher.
See the relevant documentation for details (at least ``key`` will need
to be present"""
cipher_state = factory._create_base_cipher(kwargs)
if kwargs:
raise TypeError("Unknown parameters for ECB: %s" % str(kwargs))
return EcbMode(cipher_state)

View File

@ -0,0 +1,19 @@
from typing import Union, overload
from Crypto.Util._raw_api import SmartPointer
Buffer = Union[bytes, bytearray, memoryview]
__all__ = [ 'EcbMode' ]
class EcbMode(object):
def __init__(self, block_cipher: SmartPointer) -> None: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...

View File

@ -0,0 +1,620 @@
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
"""
Galois/Counter Mode (GCM).
"""
__all__ = ['GcmMode']
from binascii import unhexlify
from Crypto.Util.py3compat import bord, _copy_bytes
from Crypto.Util._raw_api import is_buffer
from Crypto.Util.number import long_to_bytes, bytes_to_long
from Crypto.Hash import BLAKE2s
from Crypto.Random import get_random_bytes
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer,
create_string_buffer, get_raw_buffer,
SmartPointer, c_size_t, c_uint8_ptr)
from Crypto.Util import _cpu_features
# C API by module implementing GHASH
_ghash_api_template = """
int ghash_%imp%(uint8_t y_out[16],
const uint8_t block_data[],
size_t len,
const uint8_t y_in[16],
const void *exp_key);
int ghash_expand_%imp%(const uint8_t h[16],
void **ghash_tables);
int ghash_destroy_%imp%(void *ghash_tables);
"""
def _build_impl(lib, postfix):
from collections import namedtuple
funcs = ( "ghash", "ghash_expand", "ghash_destroy" )
GHASH_Imp = namedtuple('_GHash_Imp', funcs)
try:
imp_funcs = [ getattr(lib, x + "_" + postfix) for x in funcs ]
except AttributeError: # Make sphinx stop complaining with its mocklib
imp_funcs = [ None ] * 3
params = dict(zip(funcs, imp_funcs))
return GHASH_Imp(**params)
def _get_ghash_portable():
api = _ghash_api_template.replace("%imp%", "portable")
lib = load_pycryptodome_raw_lib("Crypto.Hash._ghash_portable", api)
result = _build_impl(lib, "portable")
return result
_ghash_portable = _get_ghash_portable()
def _get_ghash_clmul():
"""Return None if CLMUL implementation is not available"""
if not _cpu_features.have_clmul():
return None
try:
api = _ghash_api_template.replace("%imp%", "clmul")
lib = load_pycryptodome_raw_lib("Crypto.Hash._ghash_clmul", api)
result = _build_impl(lib, "clmul")
except OSError:
result = None
return result
_ghash_clmul = _get_ghash_clmul()
class _GHASH(object):
"""GHASH function defined in NIST SP 800-38D, Algorithm 2.
If X_1, X_2, .. X_m are the blocks of input data, the function
computes:
X_1*H^{m} + X_2*H^{m-1} + ... + X_m*H
in the Galois field GF(2^256) using the reducing polynomial
(x^128 + x^7 + x^2 + x + 1).
"""
def __init__(self, subkey, ghash_c):
assert len(subkey) == 16
self.ghash_c = ghash_c
self._exp_key = VoidPointer()
result = ghash_c.ghash_expand(c_uint8_ptr(subkey),
self._exp_key.address_of())
if result:
raise ValueError("Error %d while expanding the GHASH key" % result)
self._exp_key = SmartPointer(self._exp_key.get(),
ghash_c.ghash_destroy)
# create_string_buffer always returns a string of zeroes
self._last_y = create_string_buffer(16)
def update(self, block_data):
assert len(block_data) % 16 == 0
result = self.ghash_c.ghash(self._last_y,
c_uint8_ptr(block_data),
c_size_t(len(block_data)),
self._last_y,
self._exp_key.get())
if result:
raise ValueError("Error %d while updating GHASH" % result)
return self
def digest(self):
return get_raw_buffer(self._last_y)
def enum(**enums):
return type('Enum', (), enums)
MacStatus = enum(PROCESSING_AUTH_DATA=1, PROCESSING_CIPHERTEXT=2)
class GcmMode(object):
"""Galois Counter Mode (GCM).
This is an Authenticated Encryption with Associated Data (`AEAD`_) mode.
It provides both confidentiality and authenticity.
The header of the message may be left in the clear, if needed, and it will
still be subject to authentication. The decryption step tells the receiver
if the message comes from a source that really knowns the secret key.
Additionally, decryption detects if any part of the message - including the
header - has been modified or corrupted.
This mode requires a *nonce*.
This mode is only available for ciphers that operate on 128 bits blocks
(e.g. AES but not TDES).
See `NIST SP800-38D`_.
.. _`NIST SP800-38D`: http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
.. _AEAD: http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-encryption.html
:undocumented: __init__
"""
def __init__(self, factory, key, nonce, mac_len, cipher_params, ghash_c):
self.block_size = factory.block_size
if self.block_size != 16:
raise ValueError("GCM mode is only available for ciphers"
" that operate on 128 bits blocks")
if len(nonce) == 0:
raise ValueError("Nonce cannot be empty")
if not is_buffer(nonce):
raise TypeError("Nonce must be bytes, bytearray or memoryview")
# See NIST SP 800 38D, 5.2.1.1
if len(nonce) > 2**64 - 1:
raise ValueError("Nonce exceeds maximum length")
self.nonce = _copy_bytes(None, None, nonce)
"""Nonce"""
self._factory = factory
self._key = _copy_bytes(None, None, key)
self._tag = None # Cache for MAC tag
self._mac_len = mac_len
if not (4 <= mac_len <= 16):
raise ValueError("Parameter 'mac_len' must be in the range 4..16")
# Allowed transitions after initialization
self._next = [self.update, self.encrypt, self.decrypt,
self.digest, self.verify]
self._no_more_assoc_data = False
# Length of associated data
self._auth_len = 0
# Length of the ciphertext or plaintext
self._msg_len = 0
# Step 1 in SP800-38D, Algorithm 4 (encryption) - Compute H
# See also Algorithm 5 (decryption)
hash_subkey = factory.new(key,
self._factory.MODE_ECB,
**cipher_params
).encrypt(b'\x00' * 16)
# Step 2 - Compute J0
if len(self.nonce) == 12:
j0 = self.nonce + b"\x00\x00\x00\x01"
else:
fill = (16 - (len(nonce) % 16)) % 16 + 8
ghash_in = (self.nonce +
b'\x00' * fill +
long_to_bytes(8 * len(nonce), 8))
j0 = _GHASH(hash_subkey, ghash_c).update(ghash_in).digest()
# Step 3 - Prepare GCTR cipher for encryption/decryption
nonce_ctr = j0[:12]
iv_ctr = (bytes_to_long(j0) + 1) & 0xFFFFFFFF
self._cipher = factory.new(key,
self._factory.MODE_CTR,
initial_value=iv_ctr,
nonce=nonce_ctr,
**cipher_params)
# Step 5 - Bootstrat GHASH
self._signer = _GHASH(hash_subkey, ghash_c)
# Step 6 - Prepare GCTR cipher for GMAC
self._tag_cipher = factory.new(key,
self._factory.MODE_CTR,
initial_value=j0,
nonce=b"",
**cipher_params)
# Cache for data to authenticate
self._cache = b""
self._status = MacStatus.PROCESSING_AUTH_DATA
def update(self, assoc_data):
"""Protect associated data
If there is any associated data, the caller has to invoke
this function one or more times, before using
``decrypt`` or ``encrypt``.
By *associated data* it is meant any data (e.g. packet headers) that
will not be encrypted and will be transmitted in the clear.
However, the receiver is still able to detect any modification to it.
In GCM, the *associated data* is also called
*additional authenticated data* (AAD).
If there is no associated data, this method must not be called.
The caller may split associated data in segments of any size, and
invoke this method multiple times, each time with the next segment.
:Parameters:
assoc_data : bytes/bytearray/memoryview
A piece of associated data. There are no restrictions on its size.
"""
if self.update not in self._next:
raise TypeError("update() can only be called"
" immediately after initialization")
self._next = [self.update, self.encrypt, self.decrypt,
self.digest, self.verify]
self._update(assoc_data)
self._auth_len += len(assoc_data)
# See NIST SP 800 38D, 5.2.1.1
if self._auth_len > 2**64 - 1:
raise ValueError("Additional Authenticated Data exceeds maximum length")
return self
def _update(self, data):
assert(len(self._cache) < 16)
if len(self._cache) > 0:
filler = min(16 - len(self._cache), len(data))
self._cache += _copy_bytes(None, filler, data)
data = data[filler:]
if len(self._cache) < 16:
return
# The cache is exactly one block
self._signer.update(self._cache)
self._cache = b""
update_len = len(data) // 16 * 16
self._cache = _copy_bytes(update_len, None, data)
if update_len > 0:
self._signer.update(data[:update_len])
def _pad_cache_and_update(self):
assert(len(self._cache) < 16)
# The authenticated data A is concatenated to the minimum
# number of zero bytes (possibly none) such that the
# - ciphertext C is aligned to the 16 byte boundary.
# See step 5 in section 7.1
# - ciphertext C is aligned to the 16 byte boundary.
# See step 6 in section 7.2
len_cache = len(self._cache)
if len_cache > 0:
self._update(b'\x00' * (16 - len_cache))
def encrypt(self, plaintext, output=None):
"""Encrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have encrypted a message
you cannot encrypt (or decrypt) another message using the same
object.
The data to encrypt can be broken up in two or
more pieces and `encrypt` can be called multiple times.
That is, the statement:
>>> c.encrypt(a) + c.encrypt(b)
is equivalent to:
>>> c.encrypt(a+b)
This function does not add any padding to the plaintext.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
If ``output`` is ``None``, the ciphertext as ``bytes``.
Otherwise, ``None``.
"""
if self.encrypt not in self._next:
raise TypeError("encrypt() can only be called after"
" initialization or an update()")
self._next = [self.encrypt, self.digest]
ciphertext = self._cipher.encrypt(plaintext, output=output)
if self._status == MacStatus.PROCESSING_AUTH_DATA:
self._pad_cache_and_update()
self._status = MacStatus.PROCESSING_CIPHERTEXT
self._update(ciphertext if output is None else output)
self._msg_len += len(plaintext)
# See NIST SP 800 38D, 5.2.1.1
if self._msg_len > 2**39 - 256:
raise ValueError("Plaintext exceeds maximum length")
return ciphertext
def decrypt(self, ciphertext, output=None):
"""Decrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have decrypted a message
you cannot decrypt (or encrypt) another message with the same
object.
The data to decrypt can be broken up in two or
more pieces and `decrypt` can be called multiple times.
That is, the statement:
>>> c.decrypt(a) + c.decrypt(b)
is equivalent to:
>>> c.decrypt(a+b)
This function does not remove any padding from the plaintext.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the plaintext must be written to.
If ``None``, the plaintext is returned.
:Return:
If ``output`` is ``None``, the plaintext as ``bytes``.
Otherwise, ``None``.
"""
if self.decrypt not in self._next:
raise TypeError("decrypt() can only be called"
" after initialization or an update()")
self._next = [self.decrypt, self.verify]
if self._status == MacStatus.PROCESSING_AUTH_DATA:
self._pad_cache_and_update()
self._status = MacStatus.PROCESSING_CIPHERTEXT
self._update(ciphertext)
self._msg_len += len(ciphertext)
return self._cipher.decrypt(ciphertext, output=output)
def digest(self):
"""Compute the *binary* MAC tag in an AEAD mode.
The caller invokes this function at the very end.
This method returns the MAC that shall be sent to the receiver,
together with the ciphertext.
:Return: the MAC, as a byte string.
"""
if self.digest not in self._next:
raise TypeError("digest() cannot be called when decrypting"
" or validating a message")
self._next = [self.digest]
return self._compute_mac()
def _compute_mac(self):
"""Compute MAC without any FSM checks."""
if self._tag:
return self._tag
# Step 5 in NIST SP 800-38D, Algorithm 4 - Compute S
self._pad_cache_and_update()
self._update(long_to_bytes(8 * self._auth_len, 8))
self._update(long_to_bytes(8 * self._msg_len, 8))
s_tag = self._signer.digest()
# Step 6 - Compute T
self._tag = self._tag_cipher.encrypt(s_tag)[:self._mac_len]
return self._tag
def hexdigest(self):
"""Compute the *printable* MAC tag.
This method is like `digest`.
:Return: the MAC, as a hexadecimal string.
"""
return "".join(["%02x" % bord(x) for x in self.digest()])
def verify(self, received_mac_tag):
"""Validate the *binary* MAC tag.
The caller invokes this function at the very end.
This method checks if the decrypted message is indeed valid
(that is, if the key is correct) and it has not been
tampered with while in transit.
:Parameters:
received_mac_tag : bytes/bytearray/memoryview
This is the *binary* MAC, as received from the sender.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
if self.verify not in self._next:
raise TypeError("verify() cannot be called"
" when encrypting a message")
self._next = [self.verify]
secret = get_random_bytes(16)
mac1 = BLAKE2s.new(digest_bits=160, key=secret,
data=self._compute_mac())
mac2 = BLAKE2s.new(digest_bits=160, key=secret,
data=received_mac_tag)
if mac1.digest() != mac2.digest():
raise ValueError("MAC check failed")
def hexverify(self, hex_mac_tag):
"""Validate the *printable* MAC tag.
This method is like `verify`.
:Parameters:
hex_mac_tag : string
This is the *printable* MAC, as received from the sender.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
self.verify(unhexlify(hex_mac_tag))
def encrypt_and_digest(self, plaintext, output=None):
"""Perform encrypt() and digest() in one step.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
a tuple with two items:
- the ciphertext, as ``bytes``
- the MAC tag, as ``bytes``
The first item becomes ``None`` when the ``output`` parameter
specified a location for the result.
"""
return self.encrypt(plaintext, output=output), self.digest()
def decrypt_and_verify(self, ciphertext, received_mac_tag, output=None):
"""Perform decrypt() and verify() in one step.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
received_mac_tag : byte string
This is the *binary* MAC, as received from the sender.
:Keywords:
output : bytearray/memoryview
The location where the plaintext must be written to.
If ``None``, the plaintext is returned.
:Return: the plaintext as ``bytes`` or ``None`` when the ``output``
parameter specified a location for the result.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
plaintext = self.decrypt(ciphertext, output=output)
self.verify(received_mac_tag)
return plaintext
def _create_gcm_cipher(factory, **kwargs):
"""Create a new block cipher, configured in Galois Counter Mode (GCM).
:Parameters:
factory : module
A block cipher module, taken from `Crypto.Cipher`.
The cipher must have block length of 16 bytes.
GCM has been only defined for `Crypto.Cipher.AES`.
:Keywords:
key : bytes/bytearray/memoryview
The secret key to use in the symmetric cipher.
It must be 16 (e.g. *AES-128*), 24 (e.g. *AES-192*)
or 32 (e.g. *AES-256*) bytes long.
nonce : bytes/bytearray/memoryview
A value that must never be reused for any other encryption.
There are no restrictions on its length,
but it is recommended to use at least 16 bytes.
The nonce shall never repeat for two
different messages encrypted with the same key,
but it does not need to be random.
If not provided, a 16 byte nonce will be randomly created.
mac_len : integer
Length of the MAC, in bytes.
It must be no larger than 16 bytes (which is the default).
"""
try:
key = kwargs.pop("key")
except KeyError as e:
raise TypeError("Missing parameter:" + str(e))
nonce = kwargs.pop("nonce", None)
if nonce is None:
nonce = get_random_bytes(16)
mac_len = kwargs.pop("mac_len", 16)
# Not documented - only used for testing
use_clmul = kwargs.pop("use_clmul", True)
if use_clmul and _ghash_clmul:
ghash_c = _ghash_clmul
else:
ghash_c = _ghash_portable
return GcmMode(factory, key, nonce, mac_len, kwargs, ghash_c)

View File

@ -0,0 +1,45 @@
from types import ModuleType
from typing import Union, Tuple, Dict, overload, Optional
__all__ = ['GcmMode']
Buffer = Union[bytes, bytearray, memoryview]
class GcmMode(object):
block_size: int
nonce: Buffer
def __init__(self,
factory: ModuleType,
key: Buffer,
nonce: Buffer,
mac_len: int,
cipher_params: Dict) -> None: ...
def update(self, assoc_data: Buffer) -> GcmMode: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
def digest(self) -> bytes: ...
def hexdigest(self) -> str: ...
def verify(self, received_mac_tag: Buffer) -> None: ...
def hexverify(self, hex_mac_tag: str) -> None: ...
@overload
def encrypt_and_digest(self,
plaintext: Buffer) -> Tuple[bytes, bytes]: ...
@overload
def encrypt_and_digest(self,
plaintext: Buffer,
output: Buffer) -> Tuple[None, bytes]: ...
def decrypt_and_verify(self,
ciphertext: Buffer,
received_mac_tag: Buffer,
output: Optional[Union[bytearray, memoryview]] = ...) -> bytes: ...

View File

@ -0,0 +1,525 @@
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
"""
Offset Codebook (OCB) mode.
OCB is Authenticated Encryption with Associated Data (AEAD) cipher mode
designed by Prof. Phillip Rogaway and specified in `RFC7253`_.
The algorithm provides both authenticity and privacy, it is very efficient,
it uses only one key and it can be used in online mode (so that encryption
or decryption can start before the end of the message is available).
This module implements the third and last variant of OCB (OCB3) and it only
works in combination with a 128-bit block symmetric cipher, like AES.
OCB is patented in US but `free licenses`_ exist for software implementations
meant for non-military purposes.
Example:
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> key = get_random_bytes(32)
>>> cipher = AES.new(key, AES.MODE_OCB)
>>> plaintext = b"Attack at dawn"
>>> ciphertext, mac = cipher.encrypt_and_digest(plaintext)
>>> # Deliver cipher.nonce, ciphertext and mac
...
>>> cipher = AES.new(key, AES.MODE_OCB, nonce=nonce)
>>> try:
>>> plaintext = cipher.decrypt_and_verify(ciphertext, mac)
>>> except ValueError:
>>> print "Invalid message"
>>> else:
>>> print plaintext
:undocumented: __package__
.. _RFC7253: http://www.rfc-editor.org/info/rfc7253
.. _free licenses: http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm
"""
import struct
from binascii import unhexlify
from Crypto.Util.py3compat import bord, _copy_bytes
from Crypto.Util.number import long_to_bytes, bytes_to_long
from Crypto.Util.strxor import strxor
from Crypto.Hash import BLAKE2s
from Crypto.Random import get_random_bytes
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer,
create_string_buffer, get_raw_buffer,
SmartPointer, c_size_t, c_uint8_ptr,
is_buffer)
_raw_ocb_lib = load_pycryptodome_raw_lib("Crypto.Cipher._raw_ocb", """
int OCB_start_operation(void *cipher,
const uint8_t *offset_0,
size_t offset_0_len,
void **pState);
int OCB_encrypt(void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int OCB_decrypt(void *state,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int OCB_update(void *state,
const uint8_t *in,
size_t data_len);
int OCB_digest(void *state,
uint8_t *tag,
size_t tag_len);
int OCB_stop_operation(void *state);
""")
class OcbMode(object):
"""Offset Codebook (OCB) mode.
:undocumented: __init__
"""
def __init__(self, factory, nonce, mac_len, cipher_params):
if factory.block_size != 16:
raise ValueError("OCB mode is only available for ciphers"
" that operate on 128 bits blocks")
self.block_size = 16
"""The block size of the underlying cipher, in bytes."""
self.nonce = _copy_bytes(None, None, nonce)
"""Nonce used for this session."""
if len(nonce) not in range(1, 16):
raise ValueError("Nonce must be at most 15 bytes long")
if not is_buffer(nonce):
raise TypeError("Nonce must be bytes, bytearray or memoryview")
self._mac_len = mac_len
if not 8 <= mac_len <= 16:
raise ValueError("MAC tag must be between 8 and 16 bytes long")
# Cache for MAC tag
self._mac_tag = None
# Cache for unaligned associated data
self._cache_A = b""
# Cache for unaligned ciphertext/plaintext
self._cache_P = b""
# Allowed transitions after initialization
self._next = [self.update, self.encrypt, self.decrypt,
self.digest, self.verify]
# Compute Offset_0
params_without_key = dict(cipher_params)
key = params_without_key.pop("key")
nonce = (struct.pack('B', self._mac_len << 4 & 0xFF) +
b'\x00' * (14 - len(nonce)) +
b'\x01' + self.nonce)
bottom_bits = bord(nonce[15]) & 0x3F # 6 bits, 0..63
top_bits = bord(nonce[15]) & 0xC0 # 2 bits
ktop_cipher = factory.new(key,
factory.MODE_ECB,
**params_without_key)
ktop = ktop_cipher.encrypt(struct.pack('15sB',
nonce[:15],
top_bits))
stretch = ktop + strxor(ktop[:8], ktop[1:9]) # 192 bits
offset_0 = long_to_bytes(bytes_to_long(stretch) >>
(64 - bottom_bits), 24)[8:]
# Create low-level cipher instance
raw_cipher = factory._create_base_cipher(cipher_params)
if cipher_params:
raise TypeError("Unknown keywords: " + str(cipher_params))
self._state = VoidPointer()
result = _raw_ocb_lib.OCB_start_operation(raw_cipher.get(),
offset_0,
c_size_t(len(offset_0)),
self._state.address_of())
if result:
raise ValueError("Error %d while instantiating the OCB mode"
% result)
# Ensure that object disposal of this Python object will (eventually)
# free the memory allocated by the raw library for the cipher mode
self._state = SmartPointer(self._state.get(),
_raw_ocb_lib.OCB_stop_operation)
# Memory allocated for the underlying block cipher is now owed
# by the cipher mode
raw_cipher.release()
def _update(self, assoc_data, assoc_data_len):
result = _raw_ocb_lib.OCB_update(self._state.get(),
c_uint8_ptr(assoc_data),
c_size_t(assoc_data_len))
if result:
raise ValueError("Error %d while computing MAC in OCB mode" % result)
def update(self, assoc_data):
"""Process the associated data.
If there is any associated data, the caller has to invoke
this method one or more times, before using
``decrypt`` or ``encrypt``.
By *associated data* it is meant any data (e.g. packet headers) that
will not be encrypted and will be transmitted in the clear.
However, the receiver shall still able to detect modifications.
If there is no associated data, this method must not be called.
The caller may split associated data in segments of any size, and
invoke this method multiple times, each time with the next segment.
:Parameters:
assoc_data : bytes/bytearray/memoryview
A piece of associated data.
"""
if self.update not in self._next:
raise TypeError("update() can only be called"
" immediately after initialization")
self._next = [self.encrypt, self.decrypt, self.digest,
self.verify, self.update]
if len(self._cache_A) > 0:
filler = min(16 - len(self._cache_A), len(assoc_data))
self._cache_A += _copy_bytes(None, filler, assoc_data)
assoc_data = assoc_data[filler:]
if len(self._cache_A) < 16:
return self
# Clear the cache, and proceeding with any other aligned data
self._cache_A, seg = b"", self._cache_A
self.update(seg)
update_len = len(assoc_data) // 16 * 16
self._cache_A = _copy_bytes(update_len, None, assoc_data)
self._update(assoc_data, update_len)
return self
def _transcrypt_aligned(self, in_data, in_data_len,
trans_func, trans_desc):
out_data = create_string_buffer(in_data_len)
result = trans_func(self._state.get(),
in_data,
out_data,
c_size_t(in_data_len))
if result:
raise ValueError("Error %d while %sing in OCB mode"
% (result, trans_desc))
return get_raw_buffer(out_data)
def _transcrypt(self, in_data, trans_func, trans_desc):
# Last piece to encrypt/decrypt
if in_data is None:
out_data = self._transcrypt_aligned(self._cache_P,
len(self._cache_P),
trans_func,
trans_desc)
self._cache_P = b""
return out_data
# Try to fill up the cache, if it already contains something
prefix = b""
if len(self._cache_P) > 0:
filler = min(16 - len(self._cache_P), len(in_data))
self._cache_P += _copy_bytes(None, filler, in_data)
in_data = in_data[filler:]
if len(self._cache_P) < 16:
# We could not manage to fill the cache, so there is certainly
# no output yet.
return b""
# Clear the cache, and proceeding with any other aligned data
prefix = self._transcrypt_aligned(self._cache_P,
len(self._cache_P),
trans_func,
trans_desc)
self._cache_P = b""
# Process data in multiples of the block size
trans_len = len(in_data) // 16 * 16
result = self._transcrypt_aligned(c_uint8_ptr(in_data),
trans_len,
trans_func,
trans_desc)
if prefix:
result = prefix + result
# Left-over
self._cache_P = _copy_bytes(trans_len, None, in_data)
return result
def encrypt(self, plaintext=None):
"""Encrypt the next piece of plaintext.
After the entire plaintext has been passed (but before `digest`),
you **must** call this method one last time with no arguments to collect
the final piece of ciphertext.
If possible, use the method `encrypt_and_digest` instead.
:Parameters:
plaintext : bytes/bytearray/memoryview
The next piece of data to encrypt or ``None`` to signify
that encryption has finished and that any remaining ciphertext
has to be produced.
:Return:
the ciphertext, as a byte string.
Its length may not match the length of the *plaintext*.
"""
if self.encrypt not in self._next:
raise TypeError("encrypt() can only be called after"
" initialization or an update()")
if plaintext is None:
self._next = [self.digest]
else:
self._next = [self.encrypt]
return self._transcrypt(plaintext, _raw_ocb_lib.OCB_encrypt, "encrypt")
def decrypt(self, ciphertext=None):
"""Decrypt the next piece of ciphertext.
After the entire ciphertext has been passed (but before `verify`),
you **must** call this method one last time with no arguments to collect
the remaining piece of plaintext.
If possible, use the method `decrypt_and_verify` instead.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The next piece of data to decrypt or ``None`` to signify
that decryption has finished and that any remaining plaintext
has to be produced.
:Return:
the plaintext, as a byte string.
Its length may not match the length of the *ciphertext*.
"""
if self.decrypt not in self._next:
raise TypeError("decrypt() can only be called after"
" initialization or an update()")
if ciphertext is None:
self._next = [self.verify]
else:
self._next = [self.decrypt]
return self._transcrypt(ciphertext,
_raw_ocb_lib.OCB_decrypt,
"decrypt")
def _compute_mac_tag(self):
if self._mac_tag is not None:
return
if self._cache_A:
self._update(self._cache_A, len(self._cache_A))
self._cache_A = b""
mac_tag = create_string_buffer(16)
result = _raw_ocb_lib.OCB_digest(self._state.get(),
mac_tag,
c_size_t(len(mac_tag))
)
if result:
raise ValueError("Error %d while computing digest in OCB mode"
% result)
self._mac_tag = get_raw_buffer(mac_tag)[:self._mac_len]
def digest(self):
"""Compute the *binary* MAC tag.
Call this method after the final `encrypt` (the one with no arguments)
to obtain the MAC tag.
The MAC tag is needed by the receiver to determine authenticity
of the message.
:Return: the MAC, as a byte string.
"""
if self.digest not in self._next:
raise TypeError("digest() cannot be called now for this cipher")
assert(len(self._cache_P) == 0)
self._next = [self.digest]
if self._mac_tag is None:
self._compute_mac_tag()
return self._mac_tag
def hexdigest(self):
"""Compute the *printable* MAC tag.
This method is like `digest`.
:Return: the MAC, as a hexadecimal string.
"""
return "".join(["%02x" % bord(x) for x in self.digest()])
def verify(self, received_mac_tag):
"""Validate the *binary* MAC tag.
Call this method after the final `decrypt` (the one with no arguments)
to check if the message is authentic and valid.
:Parameters:
received_mac_tag : bytes/bytearray/memoryview
This is the *binary* MAC, as received from the sender.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
if self.verify not in self._next:
raise TypeError("verify() cannot be called now for this cipher")
assert(len(self._cache_P) == 0)
self._next = [self.verify]
if self._mac_tag is None:
self._compute_mac_tag()
secret = get_random_bytes(16)
mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=self._mac_tag)
mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=received_mac_tag)
if mac1.digest() != mac2.digest():
raise ValueError("MAC check failed")
def hexverify(self, hex_mac_tag):
"""Validate the *printable* MAC tag.
This method is like `verify`.
:Parameters:
hex_mac_tag : string
This is the *printable* MAC, as received from the sender.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
self.verify(unhexlify(hex_mac_tag))
def encrypt_and_digest(self, plaintext):
"""Encrypt the message and create the MAC tag in one step.
:Parameters:
plaintext : bytes/bytearray/memoryview
The entire message to encrypt.
:Return:
a tuple with two byte strings:
- the encrypted data
- the MAC
"""
return self.encrypt(plaintext) + self.encrypt(), self.digest()
def decrypt_and_verify(self, ciphertext, received_mac_tag):
"""Decrypted the message and verify its authenticity in one step.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The entire message to decrypt.
received_mac_tag : byte string
This is the *binary* MAC, as received from the sender.
:Return: the decrypted data (byte string).
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
plaintext = self.decrypt(ciphertext) + self.decrypt()
self.verify(received_mac_tag)
return plaintext
def _create_ocb_cipher(factory, **kwargs):
"""Create a new block cipher, configured in OCB mode.
:Parameters:
factory : module
A symmetric cipher module from `Crypto.Cipher`
(like `Crypto.Cipher.AES`).
:Keywords:
nonce : bytes/bytearray/memoryview
A value that must never be reused for any other encryption.
Its length can vary from 1 to 15 bytes.
If not specified, a random 15 bytes long nonce is generated.
mac_len : integer
Length of the MAC, in bytes.
It must be in the range ``[8..16]``.
The default is 16 (128 bits).
Any other keyword will be passed to the underlying block cipher.
See the relevant documentation for details (at least ``key`` will need
to be present).
"""
try:
nonce = kwargs.pop("nonce", None)
if nonce is None:
nonce = get_random_bytes(15)
mac_len = kwargs.pop("mac_len", 16)
except KeyError as e:
raise TypeError("Keyword missing: " + str(e))
return OcbMode(factory, nonce, mac_len, kwargs)

View File

@ -0,0 +1,36 @@
from types import ModuleType
from typing import Union, Any, Optional, Tuple, Dict, overload
Buffer = Union[bytes, bytearray, memoryview]
class OcbMode(object):
block_size: int
nonce: Buffer
def __init__(self,
factory: ModuleType,
nonce: Buffer,
mac_len: int,
cipher_params: Dict) -> None: ...
def update(self, assoc_data: Buffer) -> OcbMode: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
def digest(self) -> bytes: ...
def hexdigest(self) -> str: ...
def verify(self, received_mac_tag: Buffer) -> None: ...
def hexverify(self, hex_mac_tag: str) -> None: ...
def encrypt_and_digest(self,
plaintext: Buffer) -> Tuple[bytes, bytes]: ...
def decrypt_and_verify(self,
ciphertext: Buffer,
received_mac_tag: Buffer) -> bytes: ...

View File

@ -0,0 +1,282 @@
# -*- coding: utf-8 -*-
#
# Cipher/mode_ofb.py : OFB mode
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""
Output Feedback (CFB) mode.
"""
__all__ = ['OfbMode']
from Crypto.Util.py3compat import _copy_bytes
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer,
create_string_buffer, get_raw_buffer,
SmartPointer, c_size_t, c_uint8_ptr,
is_writeable_buffer)
from Crypto.Random import get_random_bytes
raw_ofb_lib = load_pycryptodome_raw_lib("Crypto.Cipher._raw_ofb", """
int OFB_start_operation(void *cipher,
const uint8_t iv[],
size_t iv_len,
void **pResult);
int OFB_encrypt(void *ofbState,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int OFB_decrypt(void *ofbState,
const uint8_t *in,
uint8_t *out,
size_t data_len);
int OFB_stop_operation(void *state);
"""
)
class OfbMode(object):
"""*Output FeedBack (OFB)*.
This mode is very similar to CBC, but it
transforms the underlying block cipher into a stream cipher.
The keystream is the iterated block encryption of the
previous ciphertext block.
An Initialization Vector (*IV*) is required.
See `NIST SP800-38A`_ , Section 6.4.
.. _`NIST SP800-38A` : http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
:undocumented: __init__
"""
def __init__(self, block_cipher, iv):
"""Create a new block cipher, configured in OFB mode.
:Parameters:
block_cipher : C pointer
A smart pointer to the low-level block cipher instance.
iv : bytes/bytearray/memoryview
The initialization vector to use for encryption or decryption.
It is as long as the cipher block.
**The IV must be a nonce, to to be reused for any other
message**. It shall be a nonce or a random value.
Reusing the *IV* for encryptions performed with the same key
compromises confidentiality.
"""
self._state = VoidPointer()
result = raw_ofb_lib.OFB_start_operation(block_cipher.get(),
c_uint8_ptr(iv),
c_size_t(len(iv)),
self._state.address_of())
if result:
raise ValueError("Error %d while instantiating the OFB mode"
% result)
# Ensure that object disposal of this Python object will (eventually)
# free the memory allocated by the raw library for the cipher mode
self._state = SmartPointer(self._state.get(),
raw_ofb_lib.OFB_stop_operation)
# Memory allocated for the underlying block cipher is now owed
# by the cipher mode
block_cipher.release()
self.block_size = len(iv)
"""The block size of the underlying cipher, in bytes."""
self.iv = _copy_bytes(None, None, iv)
"""The Initialization Vector originally used to create the object.
The value does not change."""
self.IV = self.iv
"""Alias for `iv`"""
self._next = [ self.encrypt, self.decrypt ]
def encrypt(self, plaintext, output=None):
"""Encrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have encrypted a message
you cannot encrypt (or decrypt) another message using the same
object.
The data to encrypt can be broken up in two or
more pieces and `encrypt` can be called multiple times.
That is, the statement:
>>> c.encrypt(a) + c.encrypt(b)
is equivalent to:
>>> c.encrypt(a+b)
This function does not add any padding to the plaintext.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
If ``output`` is ``None``, the ciphertext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.encrypt not in self._next:
raise TypeError("encrypt() cannot be called after decrypt()")
self._next = [ self.encrypt ]
if output is None:
ciphertext = create_string_buffer(len(plaintext))
else:
ciphertext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(plaintext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = raw_ofb_lib.OFB_encrypt(self._state.get(),
c_uint8_ptr(plaintext),
c_uint8_ptr(ciphertext),
c_size_t(len(plaintext)))
if result:
raise ValueError("Error %d while encrypting in OFB mode" % result)
if output is None:
return get_raw_buffer(ciphertext)
else:
return None
def decrypt(self, ciphertext, output=None):
"""Decrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have decrypted a message
you cannot decrypt (or encrypt) another message with the same
object.
The data to decrypt can be broken up in two or
more pieces and `decrypt` can be called multiple times.
That is, the statement:
>>> c.decrypt(a) + c.decrypt(b)
is equivalent to:
>>> c.decrypt(a+b)
This function does not remove any padding from the plaintext.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
It can be of any length.
:Keywords:
output : bytearray/memoryview
The location where the plaintext is written to.
If ``None``, the plaintext is returned.
:Return:
If ``output`` is ``None``, the plaintext is returned as ``bytes``.
Otherwise, ``None``.
"""
if self.decrypt not in self._next:
raise TypeError("decrypt() cannot be called after encrypt()")
self._next = [ self.decrypt ]
if output is None:
plaintext = create_string_buffer(len(ciphertext))
else:
plaintext = output
if not is_writeable_buffer(output):
raise TypeError("output must be a bytearray or a writeable memoryview")
if len(ciphertext) != len(output):
raise ValueError("output must have the same length as the input"
" (%d bytes)" % len(plaintext))
result = raw_ofb_lib.OFB_decrypt(self._state.get(),
c_uint8_ptr(ciphertext),
c_uint8_ptr(plaintext),
c_size_t(len(ciphertext)))
if result:
raise ValueError("Error %d while decrypting in OFB mode" % result)
if output is None:
return get_raw_buffer(plaintext)
else:
return None
def _create_ofb_cipher(factory, **kwargs):
"""Instantiate a cipher object that performs OFB encryption/decryption.
:Parameters:
factory : module
The underlying block cipher, a module from ``Crypto.Cipher``.
:Keywords:
iv : bytes/bytearray/memoryview
The IV to use for OFB.
IV : bytes/bytearray/memoryview
Alias for ``iv``.
Any other keyword will be passed to the underlying block cipher.
See the relevant documentation for details (at least ``key`` will need
to be present).
"""
cipher_state = factory._create_base_cipher(kwargs)
iv = kwargs.pop("IV", None)
IV = kwargs.pop("iv", None)
if (None, None) == (iv, IV):
iv = get_random_bytes(factory.block_size)
if iv is not None:
if IV is not None:
raise TypeError("You must either use 'iv' or 'IV', not both")
else:
iv = IV
if len(iv) != factory.block_size:
raise ValueError("Incorrect IV length (it must be %d bytes long)" %
factory.block_size)
if kwargs:
raise TypeError("Unknown parameters for OFB: %s" % str(kwargs))
return OfbMode(cipher_state, iv)

View File

@ -0,0 +1,25 @@
from typing import Union, overload
from Crypto.Util._raw_api import SmartPointer
Buffer = Union[bytes, bytearray, memoryview]
__all__ = ['OfbMode']
class OfbMode(object):
block_size: int
iv: Buffer
IV: Buffer
def __init__(self,
block_cipher: SmartPointer,
iv: Buffer) -> None: ...
@overload
def encrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def encrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...
@overload
def decrypt(self, plaintext: Buffer) -> bytes: ...
@overload
def decrypt(self, plaintext: Buffer, output: Union[bytearray, memoryview]) -> None: ...

View File

@ -0,0 +1,206 @@
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
"""
OpenPGP mode.
"""
__all__ = ['OpenPgpMode']
from Crypto.Util.py3compat import _copy_bytes
from Crypto.Random import get_random_bytes
class OpenPgpMode(object):
"""OpenPGP mode.
This mode is a variant of CFB, and it is only used in PGP and
OpenPGP_ applications. If in doubt, use another mode.
An Initialization Vector (*IV*) is required.
Unlike CFB, the *encrypted* IV (not the IV itself) is
transmitted to the receiver.
The IV is a random data block. For legacy reasons, two of its bytes are
duplicated to act as a checksum for the correctness of the key, which is now
known to be insecure and is ignored. The encrypted IV is therefore 2 bytes
longer than the clean IV.
.. _OpenPGP: http://tools.ietf.org/html/rfc4880
:undocumented: __init__
"""
def __init__(self, factory, key, iv, cipher_params):
#: The block size of the underlying cipher, in bytes.
self.block_size = factory.block_size
self._done_first_block = False # True after the first encryption
# Instantiate a temporary cipher to process the IV
IV_cipher = factory.new(
key,
factory.MODE_CFB,
IV=b'\x00' * self.block_size,
segment_size=self.block_size * 8,
**cipher_params)
iv = _copy_bytes(None, None, iv)
# The cipher will be used for...
if len(iv) == self.block_size:
# ... encryption
self._encrypted_IV = IV_cipher.encrypt(iv + iv[-2:])
elif len(iv) == self.block_size + 2:
# ... decryption
self._encrypted_IV = iv
# Last two bytes are for a deprecated "quick check" feature that
# should not be used. (https://eprint.iacr.org/2005/033)
iv = IV_cipher.decrypt(iv)[:-2]
else:
raise ValueError("Length of IV must be %d or %d bytes"
" for MODE_OPENPGP"
% (self.block_size, self.block_size + 2))
self.iv = self.IV = iv
# Instantiate the cipher for the real PGP data
self._cipher = factory.new(
key,
factory.MODE_CFB,
IV=self._encrypted_IV[-self.block_size:],
segment_size=self.block_size * 8,
**cipher_params)
def encrypt(self, plaintext):
"""Encrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have encrypted a message
you cannot encrypt (or decrypt) another message using the same
object.
The data to encrypt can be broken up in two or
more pieces and `encrypt` can be called multiple times.
That is, the statement:
>>> c.encrypt(a) + c.encrypt(b)
is equivalent to:
>>> c.encrypt(a+b)
This function does not add any padding to the plaintext.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
:Return:
the encrypted data, as a byte string.
It is as long as *plaintext* with one exception:
when encrypting the first message chunk,
the encypted IV is prepended to the returned ciphertext.
"""
res = self._cipher.encrypt(plaintext)
if not self._done_first_block:
res = self._encrypted_IV + res
self._done_first_block = True
return res
def decrypt(self, ciphertext):
"""Decrypt data with the key and the parameters set at initialization.
A cipher object is stateful: once you have decrypted a message
you cannot decrypt (or encrypt) another message with the same
object.
The data to decrypt can be broken up in two or
more pieces and `decrypt` can be called multiple times.
That is, the statement:
>>> c.decrypt(a) + c.decrypt(b)
is equivalent to:
>>> c.decrypt(a+b)
This function does not remove any padding from the plaintext.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
:Return: the decrypted data (byte string).
"""
return self._cipher.decrypt(ciphertext)
def _create_openpgp_cipher(factory, **kwargs):
"""Create a new block cipher, configured in OpenPGP mode.
:Parameters:
factory : module
The module.
:Keywords:
key : bytes/bytearray/memoryview
The secret key to use in the symmetric cipher.
IV : bytes/bytearray/memoryview
The initialization vector to use for encryption or decryption.
For encryption, the IV must be as long as the cipher block size.
For decryption, it must be 2 bytes longer (it is actually the
*encrypted* IV which was prefixed to the ciphertext).
"""
iv = kwargs.pop("IV", None)
IV = kwargs.pop("iv", None)
if (None, None) == (iv, IV):
iv = get_random_bytes(factory.block_size)
if iv is not None:
if IV is not None:
raise TypeError("You must either use 'iv' or 'IV', not both")
else:
iv = IV
try:
key = kwargs.pop("key")
except KeyError as e:
raise TypeError("Missing component: " + str(e))
return OpenPgpMode(factory, key, iv, kwargs)

View File

@ -0,0 +1,20 @@
from types import ModuleType
from typing import Union, Dict
Buffer = Union[bytes, bytearray, memoryview]
__all__ = ['OpenPgpMode']
class OpenPgpMode(object):
block_size: int
iv: Union[bytes, bytearray, memoryview]
IV: Union[bytes, bytearray, memoryview]
def __init__(self,
factory: ModuleType,
key: Buffer,
iv: Buffer,
cipher_params: Dict) -> None: ...
def encrypt(self, plaintext: Buffer) -> bytes: ...
def decrypt(self, plaintext: Buffer) -> bytes: ...

View File

@ -0,0 +1,392 @@
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
"""
Synthetic Initialization Vector (SIV) mode.
"""
__all__ = ['SivMode']
from binascii import hexlify, unhexlify
from Crypto.Util.py3compat import bord, _copy_bytes
from Crypto.Util._raw_api import is_buffer
from Crypto.Util.number import long_to_bytes, bytes_to_long
from Crypto.Protocol.KDF import _S2V
from Crypto.Hash import BLAKE2s
from Crypto.Random import get_random_bytes
class SivMode(object):
"""Synthetic Initialization Vector (SIV).
This is an Authenticated Encryption with Associated Data (`AEAD`_) mode.
It provides both confidentiality and authenticity.
The header of the message may be left in the clear, if needed, and it will
still be subject to authentication. The decryption step tells the receiver
if the message comes from a source that really knowns the secret key.
Additionally, decryption detects if any part of the message - including the
header - has been modified or corrupted.
Unlike other AEAD modes such as CCM, EAX or GCM, accidental reuse of a
nonce is not catastrophic for the confidentiality of the message. The only
effect is that an attacker can tell when the same plaintext (and same
associated data) is protected with the same key.
The length of the MAC is fixed to the block size of the underlying cipher.
The key size is twice the length of the key of the underlying cipher.
This mode is only available for AES ciphers.
+--------------------+---------------+-------------------+
| Cipher | SIV MAC size | SIV key length |
| | (bytes) | (bytes) |
+====================+===============+===================+
| AES-128 | 16 | 32 |
+--------------------+---------------+-------------------+
| AES-192 | 16 | 48 |
+--------------------+---------------+-------------------+
| AES-256 | 16 | 64 |
+--------------------+---------------+-------------------+
See `RFC5297`_ and the `original paper`__.
.. _RFC5297: https://tools.ietf.org/html/rfc5297
.. _AEAD: http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-encryption.html
.. __: http://www.cs.ucdavis.edu/~rogaway/papers/keywrap.pdf
:undocumented: __init__
"""
def __init__(self, factory, key, nonce, kwargs):
self.block_size = factory.block_size
"""The block size of the underlying cipher, in bytes."""
self._factory = factory
self._cipher_params = kwargs
if len(key) not in (32, 48, 64):
raise ValueError("Incorrect key length (%d bytes)" % len(key))
if nonce is not None:
if not is_buffer(nonce):
raise TypeError("When provided, the nonce must be bytes, bytearray or memoryview")
if len(nonce) == 0:
raise ValueError("When provided, the nonce must be non-empty")
self.nonce = _copy_bytes(None, None, nonce)
"""Public attribute is only available in case of non-deterministic
encryption."""
subkey_size = len(key) // 2
self._mac_tag = None # Cache for MAC tag
self._kdf = _S2V(key[:subkey_size],
ciphermod=factory,
cipher_params=self._cipher_params)
self._subkey_cipher = key[subkey_size:]
# Purely for the purpose of verifying that cipher_params are OK
factory.new(key[:subkey_size], factory.MODE_ECB, **kwargs)
# Allowed transitions after initialization
self._next = [self.update, self.encrypt, self.decrypt,
self.digest, self.verify]
def _create_ctr_cipher(self, v):
"""Create a new CTR cipher from V in SIV mode"""
v_int = bytes_to_long(v)
q = v_int & 0xFFFFFFFFFFFFFFFF7FFFFFFF7FFFFFFF
return self._factory.new(
self._subkey_cipher,
self._factory.MODE_CTR,
initial_value=q,
nonce=b"",
**self._cipher_params)
def update(self, component):
"""Protect one associated data component
For SIV, the associated data is a sequence (*vector*) of non-empty
byte strings (*components*).
This method consumes the next component. It must be called
once for each of the components that constitue the associated data.
Note that the components have clear boundaries, so that:
>>> cipher.update(b"builtin")
>>> cipher.update(b"securely")
is not equivalent to:
>>> cipher.update(b"built")
>>> cipher.update(b"insecurely")
If there is no associated data, this method must not be called.
:Parameters:
component : bytes/bytearray/memoryview
The next associated data component.
"""
if self.update not in self._next:
raise TypeError("update() can only be called"
" immediately after initialization")
self._next = [self.update, self.encrypt, self.decrypt,
self.digest, self.verify]
return self._kdf.update(component)
def encrypt(self, plaintext):
"""
For SIV, encryption and MAC authentication must take place at the same
point. This method shall not be used.
Use `encrypt_and_digest` instead.
"""
raise TypeError("encrypt() not allowed for SIV mode."
" Use encrypt_and_digest() instead.")
def decrypt(self, ciphertext):
"""
For SIV, decryption and verification must take place at the same
point. This method shall not be used.
Use `decrypt_and_verify` instead.
"""
raise TypeError("decrypt() not allowed for SIV mode."
" Use decrypt_and_verify() instead.")
def digest(self):
"""Compute the *binary* MAC tag.
The caller invokes this function at the very end.
This method returns the MAC that shall be sent to the receiver,
together with the ciphertext.
:Return: the MAC, as a byte string.
"""
if self.digest not in self._next:
raise TypeError("digest() cannot be called when decrypting"
" or validating a message")
self._next = [self.digest]
if self._mac_tag is None:
self._mac_tag = self._kdf.derive()
return self._mac_tag
def hexdigest(self):
"""Compute the *printable* MAC tag.
This method is like `digest`.
:Return: the MAC, as a hexadecimal string.
"""
return "".join(["%02x" % bord(x) for x in self.digest()])
def verify(self, received_mac_tag):
"""Validate the *binary* MAC tag.
The caller invokes this function at the very end.
This method checks if the decrypted message is indeed valid
(that is, if the key is correct) and it has not been
tampered with while in transit.
:Parameters:
received_mac_tag : bytes/bytearray/memoryview
This is the *binary* MAC, as received from the sender.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
if self.verify not in self._next:
raise TypeError("verify() cannot be called"
" when encrypting a message")
self._next = [self.verify]
if self._mac_tag is None:
self._mac_tag = self._kdf.derive()
secret = get_random_bytes(16)
mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=self._mac_tag)
mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=received_mac_tag)
if mac1.digest() != mac2.digest():
raise ValueError("MAC check failed")
def hexverify(self, hex_mac_tag):
"""Validate the *printable* MAC tag.
This method is like `verify`.
:Parameters:
hex_mac_tag : string
This is the *printable* MAC, as received from the sender.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
self.verify(unhexlify(hex_mac_tag))
def encrypt_and_digest(self, plaintext, output=None):
"""Perform encrypt() and digest() in one step.
:Parameters:
plaintext : bytes/bytearray/memoryview
The piece of data to encrypt.
:Keywords:
output : bytearray/memoryview
The location where the ciphertext must be written to.
If ``None``, the ciphertext is returned.
:Return:
a tuple with two items:
- the ciphertext, as ``bytes``
- the MAC tag, as ``bytes``
The first item becomes ``None`` when the ``output`` parameter
specified a location for the result.
"""
if self.encrypt not in self._next:
raise TypeError("encrypt() can only be called after"
" initialization or an update()")
self._next = [ self.digest ]
# Compute V (MAC)
if hasattr(self, 'nonce'):
self._kdf.update(self.nonce)
self._kdf.update(plaintext)
self._mac_tag = self._kdf.derive()
cipher = self._create_ctr_cipher(self._mac_tag)
return cipher.encrypt(plaintext, output=output), self._mac_tag
def decrypt_and_verify(self, ciphertext, mac_tag, output=None):
"""Perform decryption and verification in one step.
A cipher object is stateful: once you have decrypted a message
you cannot decrypt (or encrypt) another message with the same
object.
You cannot reuse an object for encrypting
or decrypting other data with the same key.
This function does not remove any padding from the plaintext.
:Parameters:
ciphertext : bytes/bytearray/memoryview
The piece of data to decrypt.
It can be of any length.
mac_tag : bytes/bytearray/memoryview
This is the *binary* MAC, as received from the sender.
:Keywords:
output : bytearray/memoryview
The location where the plaintext must be written to.
If ``None``, the plaintext is returned.
:Return: the plaintext as ``bytes`` or ``None`` when the ``output``
parameter specified a location for the result.
:Raises ValueError:
if the MAC does not match. The message has been tampered with
or the key is incorrect.
"""
if self.decrypt not in self._next:
raise TypeError("decrypt() can only be called"
" after initialization or an update()")
self._next = [ self.verify ]
# Take the MAC and start the cipher for decryption
self._cipher = self._create_ctr_cipher(mac_tag)
plaintext = self._cipher.decrypt(ciphertext, output=output)
if hasattr(self, 'nonce'):
self._kdf.update(self.nonce)
self._kdf.update(plaintext if output is None else output)
self.verify(mac_tag)
return plaintext
def _create_siv_cipher(factory, **kwargs):
"""Create a new block cipher, configured in
Synthetic Initializaton Vector (SIV) mode.
:Parameters:
factory : object
A symmetric cipher module from `Crypto.Cipher`
(like `Crypto.Cipher.AES`).
:Keywords:
key : bytes/bytearray/memoryview
The secret key to use in the symmetric cipher.
It must be 32, 48 or 64 bytes long.
If AES is the chosen cipher, the variants *AES-128*,
*AES-192* and or *AES-256* will be used internally.
nonce : bytes/bytearray/memoryview
For deterministic encryption, it is not present.
Otherwise, it is a value that must never be reused
for encrypting message under this key.
There are no restrictions on its length,
but it is recommended to use at least 16 bytes.
"""
try:
key = kwargs.pop("key")
except KeyError as e:
raise TypeError("Missing parameter: " + str(e))
nonce = kwargs.pop("nonce", None)
return SivMode(factory, key, nonce, kwargs)

View File

@ -0,0 +1,38 @@
from types import ModuleType
from typing import Union, Tuple, Dict, Optional, overload
Buffer = Union[bytes, bytearray, memoryview]
__all__ = ['SivMode']
class SivMode(object):
block_size: int
nonce: bytes
def __init__(self,
factory: ModuleType,
key: Buffer,
nonce: Buffer,
kwargs: Dict) -> None: ...
def update(self, component: Buffer) -> SivMode: ...
def encrypt(self, plaintext: Buffer) -> bytes: ...
def decrypt(self, plaintext: Buffer) -> bytes: ...
def digest(self) -> bytes: ...
def hexdigest(self) -> str: ...
def verify(self, received_mac_tag: Buffer) -> None: ...
def hexverify(self, hex_mac_tag: str) -> None: ...
@overload
def encrypt_and_digest(self,
plaintext: Buffer) -> Tuple[bytes, bytes]: ...
@overload
def encrypt_and_digest(self,
plaintext: Buffer,
output: Buffer) -> Tuple[None, bytes]: ...
def decrypt_and_verify(self,
ciphertext: Buffer,
received_mac_tag: Buffer,
output: Optional[Union[bytearray, memoryview]] = ...) -> bytes: ...

View File

@ -0,0 +1,247 @@
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
from binascii import unhexlify
from Crypto.Util.py3compat import bord, tobytes
from Crypto.Random import get_random_bytes
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
VoidPointer, SmartPointer,
create_string_buffer,
get_raw_buffer, c_size_t,
c_uint8_ptr)
_raw_blake2b_lib = load_pycryptodome_raw_lib("Crypto.Hash._BLAKE2b",
"""
int blake2b_init(void **state,
const uint8_t *key,
size_t key_size,
size_t digest_size);
int blake2b_destroy(void *state);
int blake2b_update(void *state,
const uint8_t *buf,
size_t len);
int blake2b_digest(const void *state,
uint8_t digest[64]);
int blake2b_copy(const void *src, void *dst);
""")
class BLAKE2b_Hash(object):
"""A BLAKE2b hash object.
Do not instantiate directly. Use the :func:`new` function.
:ivar oid: ASN.1 Object ID
:vartype oid: string
:ivar block_size: the size in bytes of the internal message block,
input to the compression function
:vartype block_size: integer
:ivar digest_size: the size in bytes of the resulting hash
:vartype digest_size: integer
"""
# The internal block size of the hash algorithm in bytes.
block_size = 64
def __init__(self, data, key, digest_bytes, update_after_digest):
# The size of the resulting hash in bytes.
self.digest_size = digest_bytes
self._update_after_digest = update_after_digest
self._digest_done = False
# See https://tools.ietf.org/html/rfc7693
if digest_bytes in (20, 32, 48, 64) and not key:
self.oid = "1.3.6.1.4.1.1722.12.2.1." + str(digest_bytes)
state = VoidPointer()
result = _raw_blake2b_lib.blake2b_init(state.address_of(),
c_uint8_ptr(key),
c_size_t(len(key)),
c_size_t(digest_bytes)
)
if result:
raise ValueError("Error %d while instantiating BLAKE2b" % result)
self._state = SmartPointer(state.get(),
_raw_blake2b_lib.blake2b_destroy)
if data:
self.update(data)
def update(self, data):
"""Continue hashing of a message by consuming the next chunk of data.
Args:
data (bytes/bytearray/memoryview): The next chunk of the message being hashed.
"""
if self._digest_done and not self._update_after_digest:
raise TypeError("You can only call 'digest' or 'hexdigest' on this object")
result = _raw_blake2b_lib.blake2b_update(self._state.get(),
c_uint8_ptr(data),
c_size_t(len(data)))
if result:
raise ValueError("Error %d while hashing BLAKE2b data" % result)
return self
def digest(self):
"""Return the **binary** (non-printable) digest of the message that has been hashed so far.
:return: The hash digest, computed over the data processed so far.
Binary form.
:rtype: byte string
"""
bfr = create_string_buffer(64)
result = _raw_blake2b_lib.blake2b_digest(self._state.get(),
bfr)
if result:
raise ValueError("Error %d while creating BLAKE2b digest" % result)
self._digest_done = True
return get_raw_buffer(bfr)[:self.digest_size]
def hexdigest(self):
"""Return the **printable** digest of the message that has been hashed so far.
:return: The hash digest, computed over the data processed so far.
Hexadecimal encoded.
:rtype: string
"""
return "".join(["%02x" % bord(x) for x in tuple(self.digest())])
def verify(self, mac_tag):
"""Verify that a given **binary** MAC (computed by another party)
is valid.
Args:
mac_tag (bytes/bytearray/memoryview): the expected MAC of the message.
Raises:
ValueError: if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.
"""
secret = get_random_bytes(16)
mac1 = new(digest_bits=160, key=secret, data=mac_tag)
mac2 = new(digest_bits=160, key=secret, data=self.digest())
if mac1.digest() != mac2.digest():
raise ValueError("MAC check failed")
def hexverify(self, hex_mac_tag):
"""Verify that a given **printable** MAC (computed by another party)
is valid.
Args:
hex_mac_tag (string): the expected MAC of the message, as a hexadecimal string.
Raises:
ValueError: if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.
"""
self.verify(unhexlify(tobytes(hex_mac_tag)))
def new(self, **kwargs):
"""Return a new instance of a BLAKE2b hash object.
See :func:`new`.
"""
if "digest_bytes" not in kwargs and "digest_bits" not in kwargs:
kwargs["digest_bytes"] = self.digest_size
return new(**kwargs)
def new(**kwargs):
"""Create a new hash object.
Args:
data (bytes/bytearray/memoryview):
Optional. The very first chunk of the message to hash.
It is equivalent to an early call to :meth:`BLAKE2b_Hash.update`.
digest_bytes (integer):
Optional. The size of the digest, in bytes (1 to 64). Default is 64.
digest_bits (integer):
Optional and alternative to ``digest_bytes``.
The size of the digest, in bits (8 to 512, in steps of 8).
Default is 512.
key (bytes/bytearray/memoryview):
Optional. The key to use to compute the MAC (1 to 64 bytes).
If not specified, no key will be used.
update_after_digest (boolean):
Optional. By default, a hash object cannot be updated anymore after
the digest is computed. When this flag is ``True``, such check
is no longer enforced.
Returns:
A :class:`BLAKE2b_Hash` hash object
"""
data = kwargs.pop("data", None)
update_after_digest = kwargs.pop("update_after_digest", False)
digest_bytes = kwargs.pop("digest_bytes", None)
digest_bits = kwargs.pop("digest_bits", None)
if None not in (digest_bytes, digest_bits):
raise TypeError("Only one digest parameter must be provided")
if (None, None) == (digest_bytes, digest_bits):
digest_bytes = 64
if digest_bytes is not None:
if not (1 <= digest_bytes <= 64):
raise ValueError("'digest_bytes' not in range 1..64")
else:
if not (8 <= digest_bits <= 512) or (digest_bits % 8):
raise ValueError("'digest_bytes' not in range 8..512, "
"with steps of 8")
digest_bytes = digest_bits // 8
key = kwargs.pop("key", b"")
if len(key) > 64:
raise ValueError("BLAKE2s key cannot exceed 64 bytes")
if kwargs:
raise TypeError("Unknown parameters: " + str(kwargs))
return BLAKE2b_Hash(data, key, digest_bytes, update_after_digest)

Some files were not shown because too many files have changed in this diff Show More