import pandas import os import sys from sklearn.linear_model import LinearRegression IN_FILE_NAME = "in.tsv" OUT_FILE_NAME = "out.tsv" MAIN_DIR = "." NAMES_FILE_NAME = "names" TRAIN_DIR = "train" TRAIN_FILE_NAME = "train.tsv" VALUE_SEP = "\t" LINE_SEP = "\n" CATEGORY_TYPE = "category" def main(dirname: str): names = get_names() X, Y = get_train_data(names) clf = LinearRegression().fit(X, Y) clf.predict(get_input_data(dirname, names)).tofile(os.path.join( dirname, OUT_FILE_NAME), sep=LINE_SEP) def get_train_data(names: list): train_path = os.path.join(MAIN_DIR, TRAIN_DIR, TRAIN_FILE_NAME) check_file(train_path) train_data = process_input(pandas.read_csv( train_path, header=None, sep=VALUE_SEP, names=names)) train_data = train_data.loc[(train_data[names[0]] > 1000)] X = train_data.loc[:, train_data.columns != names[0]] Y = train_data[names[0]] return X, Y def get_input_data(dirname, names): in_path = os.path.join(dirname, IN_FILE_NAME) check_file(in_path) return process_input(pandas.read_csv(in_path, header=None, sep=VALUE_SEP, names=names[1:])) def process_input(df): for c in df.select_dtypes(include=object).columns.values: df[c] = df[c].astype(CATEGORY_TYPE).cat.codes return df def get_names() -> list: names_path = os.path.join(MAIN_DIR, NAMES_FILE_NAME) check_file(names_path) with open(names_path) as f_names: return f_names.read().strip().split(VALUE_SEP) def check_file(filename: str): if not os.path.exists(filename): raise FileNotFoundError(filename) if __name__ == "__main__": if len(sys.argv) < 2: raise Exception("Name of working dir not specified!") main(sys.argv[1])