add exported python file
This commit is contained in:
parent
d09c77e228
commit
594a64e45f
155
run.py
Normal file
155
run.py
Normal file
@ -0,0 +1,155 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
import pandas as pd
|
||||
from utils import *
|
||||
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
data = get_csv("train/in.tsv.xz")
|
||||
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
train_labels = get_csv("train/expected.tsv")
|
||||
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
train_data = data[[6,7]]
|
||||
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
train_data = pd.concat([train_data, train_labels], axis=1)
|
||||
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
train_data[607] = train_data[6] + train_data[0] + train_data[7]
|
||||
|
||||
|
||||
# In[7]:
|
||||
|
||||
|
||||
train_data[607] = train_data[607].apply(clean_text)
|
||||
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
train_data[607]
|
||||
|
||||
|
||||
# In[15]:
|
||||
|
||||
|
||||
with open("tmp", "w+") as f:
|
||||
for t in train_data[607]:
|
||||
f.write(t + "\n")
|
||||
|
||||
|
||||
# In[10]:
|
||||
|
||||
|
||||
KENLM_BUILD_PATH = "../kenlm/build/"
|
||||
get_ipython().system('$KENLM_BUILD_PATH/bin/lmplz -o 4 < tmp > model.arpa')
|
||||
|
||||
|
||||
# In[11]:
|
||||
|
||||
|
||||
get_ipython().system('rm tmp')
|
||||
|
||||
|
||||
# In[16]:
|
||||
|
||||
|
||||
import kenlm
|
||||
model = kenlm.Model("./model.arpa")
|
||||
|
||||
|
||||
# In[23]:
|
||||
|
||||
|
||||
get_ipython().system('pip install english_words')
|
||||
|
||||
|
||||
# In[24]:
|
||||
|
||||
|
||||
from english_words import english_words_alpha_set
|
||||
from math import log10
|
||||
|
||||
def predict(before, after):
|
||||
result = ''
|
||||
prob = 0.0
|
||||
best = []
|
||||
for word in english_words_alpha_set:
|
||||
text = ' '.join([before, word, after])
|
||||
text_score = model.score(text, bos=False, eos=False)
|
||||
if len(best) < 12:
|
||||
best.append((word, text_score))
|
||||
else:
|
||||
is_better = False
|
||||
worst_score = None
|
||||
for score in best:
|
||||
if not worst_score:
|
||||
worst_score = score
|
||||
else:
|
||||
if worst_score[1] > score[1]:
|
||||
worst_score = score
|
||||
if worst_score[1] < text_score:
|
||||
best.remove(worst_score)
|
||||
best.append((word, text_score))
|
||||
probs = sorted(best, key=lambda tup: tup[1], reverse=True)
|
||||
pred_str = ''
|
||||
for word, prob in probs:
|
||||
pred_str += f'{word}:{prob} '
|
||||
pred_str += f':{log10(0.99)}'
|
||||
return pred_str
|
||||
|
||||
|
||||
# In[27]:
|
||||
|
||||
|
||||
from nltk import trigrams, word_tokenize
|
||||
|
||||
def make_prediction(path, result_path):
|
||||
pdata = get_csv(path)
|
||||
with open(result_path, 'w', encoding='utf-8') as file_out:
|
||||
for _, row in pdata.iterrows():
|
||||
before, after = word_tokenize(clean_text(str(row[6]))), word_tokenize(clean_text(str(row[7])))
|
||||
if len(before) < 2 or len(after) < 2:
|
||||
pred = prediction
|
||||
else:
|
||||
pred = predict(before[-1], after[0])
|
||||
file_out.write(pred + '\n')
|
||||
|
||||
|
||||
# In[28]:
|
||||
|
||||
|
||||
make_prediction("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
||||
|
||||
|
||||
# In[29]:
|
||||
|
||||
|
||||
make_prediction("test-A/in.tsv.xz", "test-A/out.tsv")
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user