This commit is contained in:
s440054 2022-04-04 15:07:07 +02:00
parent 42d25a2e0f
commit 5af6e29a07
5 changed files with 6497 additions and 356 deletions

File diff suppressed because it is too large Load Diff

65
run.py
View File

@ -1,64 +1,38 @@
import pandas as pd
import csv
import regex as re
import nltk
from collections import Counter, defaultdict
import string
import unicodedata
from utils import get_csv, check_prerequisites, ENCODING, clean_text
def main():
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
check_prerequisites()
with open("in-header.tsv") as f:
in_cols = f.read().strip().split("\t")
with open("out-header.tsv") as f:
out_cols = f.read().strip().split("\t")
data = get_csv("train/in.tsv.xz")
data = pd.read_csv(
"train/in.tsv.xz",
sep="\t",
on_bad_lines='skip',
header=None,
# names=in_cols,
quoting=csv.QUOTE_NONE,
)
train_labels = pd.read_csv(
"train/expected.tsv",
sep="\t",
on_bad_lines='skip',
header=None,
# names=out_cols,
quoting=csv.QUOTE_NONE,
)
train_words = get_csv("train/expected.tsv")
train_data = data[[7, 6]]
train_data = pd.concat([train_data, train_labels], axis=1)
train_data = pd.concat([train_data, train_words], axis=1)
train_data["final"] = train_data[7] + train_data[0] + train_data[6]
train_data[760] = train_data[7] + train_data[0] + train_data[6]
model = defaultdict(lambda: defaultdict(lambda: 0))
train_model(train_data, model)
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
predict_data("test-A/in.tsv.xz", "test-A/out.tsv", model)
def clean_text(text):
return re.sub(r"\p{P}", "", str(text).lower().replace("-\\n", "").replace("\\n", " "))
def train_model(data, model):
for _, row in data.iterrows():
words = nltk.word_tokenize(clean_text(row["final"]))
words = nltk.word_tokenize(clean_text(row[760]))
for w1, w2 in nltk.bigrams(words, pad_left=True, pad_right=True):
if w1 and w2:
model[w2][w1] += 1
for w1 in model:
total_count = float(sum(model[w1].values()))
for w2 in model[w1]:
for w2 in model:
total_count = float(sum(model[w2].values()))
for w1 in model[w2]:
model[w2][w1] /= total_count
@ -85,21 +59,16 @@ def predict(word, model):
def predict_data(read_path, save_path, model):
data = pd.read_csv(
read_path,
sep="\t",
error_bad_lines=False,
header=None,
quoting=csv.QUOTE_NONE
)
with open(save_path, "w") as file:
data = get_csv(read_path)
with open(save_path, "w", encoding=ENCODING) as f:
for _, row in data.iterrows():
words = nltk.word_tokenize(clean_text(row[6]))
words = nltk.word_tokenize(clean_text(row[7]))
if len(words) < 3:
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
else:
prediction = predict(words[-1], model)
file.write(prediction + "\n")
f.write(prediction + "\n")
if __name__ == "__main__":

File diff suppressed because it is too large Load Diff

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 18,
"id": "21c9b695",
"metadata": {},
"outputs": [],
@ -59,16 +59,16 @@
" error_bad_lines=False,\n",
" header=None,\n",
" quoting=csv.QUOTE_NONE,\n",
" encoding=\"utf8\"\n",
" encoding=\"utf-8\"\n",
" )\n",
" with open(save_path, \"w\") as file:\n",
" with open(save_path, \"w\", encoding=\"utf-8\") as f:\n",
" for _, row in data.iterrows():\n",
" words = nltk.word_tokenize(clean_text(row[7]))\n",
" if len(words) < 3:\n",
" prediction = \"the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1\"\n",
" else:\n",
" prediction = predict(words[-1], model)\n",
" file.write(prediction + \"\\n\")\n"
" f.write(prediction + \"\\n\")\n"
]
},
{
@ -141,6 +141,7 @@
" header=None,\n",
" # names=in_cols,\n",
" quoting=csv.QUOTE_NONE,\n",
" encoding=\"utf-8\"\n",
")\n",
"\n",
"train_words = pd.read_csv(\n",
@ -149,7 +150,8 @@
" on_bad_lines='skip',\n",
" header=None,\n",
" # names=out_cols,\n",
" quoting=csv.QUOTE_NONE,\n",
" quoting=csv.QUOTE_NONE,,\n",
" encoding=\"utf-8\"\n",
")\n",
"\n",
"train_data = data[[7, 6]]\n",
@ -390,10 +392,21 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 19,
"id": "195cb6cf",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Norbert\\AppData\\Local\\Temp\\ipykernel_15436\\751703071.py:47: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n",
"\n",
"\n",
" data = pd.read_csv(\n"
]
}
],
"source": [
"predict_data(\"test-A/in.tsv.xz\", \"test-A/out.tsv\", model)"
]

28
utils.py Normal file
View File

@ -0,0 +1,28 @@
import nltk
import pandas as pd
import regex as re
from csv import QUOTE_NONE
ENCODING = "utf-8"
def clean_text(text):
return re.sub(r"\p{P}", "", str(text).lower().replace("-\\n", "").replace("\\n", " "))
def get_csv(fname):
return pd.read_csv(
fname,
sep="\t",
on_bad_lines='skip',
header=None,
quoting=QUOTE_NONE,
encoding=ENCODING
)
def check_prerequisites():
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')