440054
This commit is contained in:
parent
42d25a2e0f
commit
5af6e29a07
530
dev-0/out.tsv
530
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
65
run.py
65
run.py
@ -1,64 +1,38 @@
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import csv
|
|
||||||
import regex as re
|
|
||||||
import nltk
|
import nltk
|
||||||
from collections import Counter, defaultdict
|
from collections import Counter, defaultdict
|
||||||
import string
|
from utils import get_csv, check_prerequisites, ENCODING, clean_text
|
||||||
import unicodedata
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
try:
|
check_prerequisites()
|
||||||
nltk.data.find('tokenizers/punkt')
|
|
||||||
except LookupError:
|
|
||||||
nltk.download('punkt')
|
|
||||||
|
|
||||||
with open("in-header.tsv") as f:
|
data = get_csv("train/in.tsv.xz")
|
||||||
in_cols = f.read().strip().split("\t")
|
|
||||||
|
|
||||||
with open("out-header.tsv") as f:
|
|
||||||
out_cols = f.read().strip().split("\t")
|
|
||||||
|
|
||||||
data = pd.read_csv(
|
train_words = get_csv("train/expected.tsv")
|
||||||
"train/in.tsv.xz",
|
|
||||||
sep="\t",
|
|
||||||
on_bad_lines='skip',
|
|
||||||
header=None,
|
|
||||||
# names=in_cols,
|
|
||||||
quoting=csv.QUOTE_NONE,
|
|
||||||
)
|
|
||||||
|
|
||||||
train_labels = pd.read_csv(
|
|
||||||
"train/expected.tsv",
|
|
||||||
sep="\t",
|
|
||||||
on_bad_lines='skip',
|
|
||||||
header=None,
|
|
||||||
# names=out_cols,
|
|
||||||
quoting=csv.QUOTE_NONE,
|
|
||||||
)
|
|
||||||
|
|
||||||
train_data = data[[7, 6]]
|
train_data = data[[7, 6]]
|
||||||
train_data = pd.concat([train_data, train_labels], axis=1)
|
train_data = pd.concat([train_data, train_words], axis=1)
|
||||||
|
|
||||||
train_data["final"] = train_data[7] + train_data[0] + train_data[6]
|
train_data[760] = train_data[7] + train_data[0] + train_data[6]
|
||||||
|
|
||||||
model = defaultdict(lambda: defaultdict(lambda: 0))
|
model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
|
|
||||||
train_model(train_data, model)
|
train_model(train_data, model)
|
||||||
|
|
||||||
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
|
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
|
||||||
predict_data("test-A/in.tsv.xz", "test-A/out.tsv", model)
|
predict_data("test-A/in.tsv.xz", "test-A/out.tsv", model)
|
||||||
|
|
||||||
def clean_text(text):
|
|
||||||
return re.sub(r"\p{P}", "", str(text).lower().replace("-\\n", "").replace("\\n", " "))
|
|
||||||
|
|
||||||
def train_model(data, model):
|
def train_model(data, model):
|
||||||
for _, row in data.iterrows():
|
for _, row in data.iterrows():
|
||||||
words = nltk.word_tokenize(clean_text(row["final"]))
|
words = nltk.word_tokenize(clean_text(row[760]))
|
||||||
for w1, w2 in nltk.bigrams(words, pad_left=True, pad_right=True):
|
for w1, w2 in nltk.bigrams(words, pad_left=True, pad_right=True):
|
||||||
if w1 and w2:
|
if w1 and w2:
|
||||||
model[w2][w1] += 1
|
model[w2][w1] += 1
|
||||||
for w1 in model:
|
for w2 in model:
|
||||||
total_count = float(sum(model[w1].values()))
|
total_count = float(sum(model[w2].values()))
|
||||||
for w2 in model[w1]:
|
for w1 in model[w2]:
|
||||||
model[w2][w1] /= total_count
|
model[w2][w1] /= total_count
|
||||||
|
|
||||||
|
|
||||||
@ -85,21 +59,16 @@ def predict(word, model):
|
|||||||
|
|
||||||
|
|
||||||
def predict_data(read_path, save_path, model):
|
def predict_data(read_path, save_path, model):
|
||||||
data = pd.read_csv(
|
data = get_csv(read_path)
|
||||||
read_path,
|
|
||||||
sep="\t",
|
with open(save_path, "w", encoding=ENCODING) as f:
|
||||||
error_bad_lines=False,
|
|
||||||
header=None,
|
|
||||||
quoting=csv.QUOTE_NONE
|
|
||||||
)
|
|
||||||
with open(save_path, "w") as file:
|
|
||||||
for _, row in data.iterrows():
|
for _, row in data.iterrows():
|
||||||
words = nltk.word_tokenize(clean_text(row[6]))
|
words = nltk.word_tokenize(clean_text(row[7]))
|
||||||
if len(words) < 3:
|
if len(words) < 3:
|
||||||
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||||
else:
|
else:
|
||||||
prediction = predict(words[-1], model)
|
prediction = predict(words[-1], model)
|
||||||
file.write(prediction + "\n")
|
f.write(prediction + "\n")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
6203
test-A/out.tsv
6203
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
@ -2,7 +2,7 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 10,
|
"execution_count": 18,
|
||||||
"id": "21c9b695",
|
"id": "21c9b695",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -59,16 +59,16 @@
|
|||||||
" error_bad_lines=False,\n",
|
" error_bad_lines=False,\n",
|
||||||
" header=None,\n",
|
" header=None,\n",
|
||||||
" quoting=csv.QUOTE_NONE,\n",
|
" quoting=csv.QUOTE_NONE,\n",
|
||||||
" encoding=\"utf8\"\n",
|
" encoding=\"utf-8\"\n",
|
||||||
" )\n",
|
" )\n",
|
||||||
" with open(save_path, \"w\") as file:\n",
|
" with open(save_path, \"w\", encoding=\"utf-8\") as f:\n",
|
||||||
" for _, row in data.iterrows():\n",
|
" for _, row in data.iterrows():\n",
|
||||||
" words = nltk.word_tokenize(clean_text(row[7]))\n",
|
" words = nltk.word_tokenize(clean_text(row[7]))\n",
|
||||||
" if len(words) < 3:\n",
|
" if len(words) < 3:\n",
|
||||||
" prediction = \"the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1\"\n",
|
" prediction = \"the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1\"\n",
|
||||||
" else:\n",
|
" else:\n",
|
||||||
" prediction = predict(words[-1], model)\n",
|
" prediction = predict(words[-1], model)\n",
|
||||||
" file.write(prediction + \"\\n\")\n"
|
" f.write(prediction + \"\\n\")\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -141,6 +141,7 @@
|
|||||||
" header=None,\n",
|
" header=None,\n",
|
||||||
" # names=in_cols,\n",
|
" # names=in_cols,\n",
|
||||||
" quoting=csv.QUOTE_NONE,\n",
|
" quoting=csv.QUOTE_NONE,\n",
|
||||||
|
" encoding=\"utf-8\"\n",
|
||||||
")\n",
|
")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"train_words = pd.read_csv(\n",
|
"train_words = pd.read_csv(\n",
|
||||||
@ -149,7 +150,8 @@
|
|||||||
" on_bad_lines='skip',\n",
|
" on_bad_lines='skip',\n",
|
||||||
" header=None,\n",
|
" header=None,\n",
|
||||||
" # names=out_cols,\n",
|
" # names=out_cols,\n",
|
||||||
" quoting=csv.QUOTE_NONE,\n",
|
" quoting=csv.QUOTE_NONE,,\n",
|
||||||
|
" encoding=\"utf-8\"\n",
|
||||||
")\n",
|
")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"train_data = data[[7, 6]]\n",
|
"train_data = data[[7, 6]]\n",
|
||||||
@ -390,10 +392,21 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 19,
|
||||||
"id": "195cb6cf",
|
"id": "195cb6cf",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\Norbert\\AppData\\Local\\Temp\\ipykernel_15436\\751703071.py:47: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
" data = pd.read_csv(\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"predict_data(\"test-A/in.tsv.xz\", \"test-A/out.tsv\", model)"
|
"predict_data(\"test-A/in.tsv.xz\", \"test-A/out.tsv\", model)"
|
||||||
]
|
]
|
||||||
|
28
utils.py
Normal file
28
utils.py
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
import nltk
|
||||||
|
import pandas as pd
|
||||||
|
import regex as re
|
||||||
|
from csv import QUOTE_NONE
|
||||||
|
|
||||||
|
ENCODING = "utf-8"
|
||||||
|
|
||||||
|
|
||||||
|
def clean_text(text):
|
||||||
|
return re.sub(r"\p{P}", "", str(text).lower().replace("-\\n", "").replace("\\n", " "))
|
||||||
|
|
||||||
|
|
||||||
|
def get_csv(fname):
|
||||||
|
return pd.read_csv(
|
||||||
|
fname,
|
||||||
|
sep="\t",
|
||||||
|
on_bad_lines='skip',
|
||||||
|
header=None,
|
||||||
|
quoting=QUOTE_NONE,
|
||||||
|
encoding=ENCODING
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def check_prerequisites():
|
||||||
|
try:
|
||||||
|
nltk.data.find('tokenizers/punkt')
|
||||||
|
except LookupError:
|
||||||
|
nltk.download('punkt')
|
Loading…
Reference in New Issue
Block a user