440054
This commit is contained in:
parent
42d25a2e0f
commit
5af6e29a07
530
dev-0/out.tsv
530
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
65
run.py
65
run.py
@ -1,64 +1,38 @@
|
||||
import pandas as pd
|
||||
import csv
|
||||
import regex as re
|
||||
import nltk
|
||||
from collections import Counter, defaultdict
|
||||
import string
|
||||
import unicodedata
|
||||
from utils import get_csv, check_prerequisites, ENCODING, clean_text
|
||||
|
||||
|
||||
def main():
|
||||
try:
|
||||
nltk.data.find('tokenizers/punkt')
|
||||
except LookupError:
|
||||
nltk.download('punkt')
|
||||
check_prerequisites()
|
||||
|
||||
with open("in-header.tsv") as f:
|
||||
in_cols = f.read().strip().split("\t")
|
||||
data = get_csv("train/in.tsv.xz")
|
||||
|
||||
with open("out-header.tsv") as f:
|
||||
out_cols = f.read().strip().split("\t")
|
||||
|
||||
data = pd.read_csv(
|
||||
"train/in.tsv.xz",
|
||||
sep="\t",
|
||||
on_bad_lines='skip',
|
||||
header=None,
|
||||
# names=in_cols,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
)
|
||||
|
||||
train_labels = pd.read_csv(
|
||||
"train/expected.tsv",
|
||||
sep="\t",
|
||||
on_bad_lines='skip',
|
||||
header=None,
|
||||
# names=out_cols,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
)
|
||||
train_words = get_csv("train/expected.tsv")
|
||||
|
||||
train_data = data[[7, 6]]
|
||||
train_data = pd.concat([train_data, train_labels], axis=1)
|
||||
train_data = pd.concat([train_data, train_words], axis=1)
|
||||
|
||||
train_data["final"] = train_data[7] + train_data[0] + train_data[6]
|
||||
train_data[760] = train_data[7] + train_data[0] + train_data[6]
|
||||
|
||||
model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||
|
||||
train_model(train_data, model)
|
||||
|
||||
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
|
||||
predict_data("test-A/in.tsv.xz", "test-A/out.tsv", model)
|
||||
|
||||
def clean_text(text):
|
||||
return re.sub(r"\p{P}", "", str(text).lower().replace("-\\n", "").replace("\\n", " "))
|
||||
|
||||
def train_model(data, model):
|
||||
for _, row in data.iterrows():
|
||||
words = nltk.word_tokenize(clean_text(row["final"]))
|
||||
words = nltk.word_tokenize(clean_text(row[760]))
|
||||
for w1, w2 in nltk.bigrams(words, pad_left=True, pad_right=True):
|
||||
if w1 and w2:
|
||||
model[w2][w1] += 1
|
||||
for w1 in model:
|
||||
total_count = float(sum(model[w1].values()))
|
||||
for w2 in model[w1]:
|
||||
for w2 in model:
|
||||
total_count = float(sum(model[w2].values()))
|
||||
for w1 in model[w2]:
|
||||
model[w2][w1] /= total_count
|
||||
|
||||
|
||||
@ -85,21 +59,16 @@ def predict(word, model):
|
||||
|
||||
|
||||
def predict_data(read_path, save_path, model):
|
||||
data = pd.read_csv(
|
||||
read_path,
|
||||
sep="\t",
|
||||
error_bad_lines=False,
|
||||
header=None,
|
||||
quoting=csv.QUOTE_NONE
|
||||
)
|
||||
with open(save_path, "w") as file:
|
||||
data = get_csv(read_path)
|
||||
|
||||
with open(save_path, "w", encoding=ENCODING) as f:
|
||||
for _, row in data.iterrows():
|
||||
words = nltk.word_tokenize(clean_text(row[6]))
|
||||
words = nltk.word_tokenize(clean_text(row[7]))
|
||||
if len(words) < 3:
|
||||
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||
else:
|
||||
prediction = predict(words[-1], model)
|
||||
file.write(prediction + "\n")
|
||||
f.write(prediction + "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
6203
test-A/out.tsv
6203
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 18,
|
||||
"id": "21c9b695",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -59,16 +59,16 @@
|
||||
" error_bad_lines=False,\n",
|
||||
" header=None,\n",
|
||||
" quoting=csv.QUOTE_NONE,\n",
|
||||
" encoding=\"utf8\"\n",
|
||||
" encoding=\"utf-8\"\n",
|
||||
" )\n",
|
||||
" with open(save_path, \"w\") as file:\n",
|
||||
" with open(save_path, \"w\", encoding=\"utf-8\") as f:\n",
|
||||
" for _, row in data.iterrows():\n",
|
||||
" words = nltk.word_tokenize(clean_text(row[7]))\n",
|
||||
" if len(words) < 3:\n",
|
||||
" prediction = \"the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1\"\n",
|
||||
" else:\n",
|
||||
" prediction = predict(words[-1], model)\n",
|
||||
" file.write(prediction + \"\\n\")\n"
|
||||
" f.write(prediction + \"\\n\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -141,6 +141,7 @@
|
||||
" header=None,\n",
|
||||
" # names=in_cols,\n",
|
||||
" quoting=csv.QUOTE_NONE,\n",
|
||||
" encoding=\"utf-8\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"train_words = pd.read_csv(\n",
|
||||
@ -149,7 +150,8 @@
|
||||
" on_bad_lines='skip',\n",
|
||||
" header=None,\n",
|
||||
" # names=out_cols,\n",
|
||||
" quoting=csv.QUOTE_NONE,\n",
|
||||
" quoting=csv.QUOTE_NONE,,\n",
|
||||
" encoding=\"utf-8\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"train_data = data[[7, 6]]\n",
|
||||
@ -390,10 +392,21 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 19,
|
||||
"id": "195cb6cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C:\\Users\\Norbert\\AppData\\Local\\Temp\\ipykernel_15436\\751703071.py:47: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" data = pd.read_csv(\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"predict_data(\"test-A/in.tsv.xz\", \"test-A/out.tsv\", model)"
|
||||
]
|
||||
|
28
utils.py
Normal file
28
utils.py
Normal file
@ -0,0 +1,28 @@
|
||||
import nltk
|
||||
import pandas as pd
|
||||
import regex as re
|
||||
from csv import QUOTE_NONE
|
||||
|
||||
ENCODING = "utf-8"
|
||||
|
||||
|
||||
def clean_text(text):
|
||||
return re.sub(r"\p{P}", "", str(text).lower().replace("-\\n", "").replace("\\n", " "))
|
||||
|
||||
|
||||
def get_csv(fname):
|
||||
return pd.read_csv(
|
||||
fname,
|
||||
sep="\t",
|
||||
on_bad_lines='skip',
|
||||
header=None,
|
||||
quoting=QUOTE_NONE,
|
||||
encoding=ENCODING
|
||||
)
|
||||
|
||||
|
||||
def check_prerequisites():
|
||||
try:
|
||||
nltk.data.find('tokenizers/punkt')
|
||||
except LookupError:
|
||||
nltk.download('punkt')
|
Loading…
Reference in New Issue
Block a user