440054
This commit is contained in:
parent
61e88a9c8c
commit
86f2757aee
2
.gitignore
vendored
2
.gitignore
vendored
@ -6,3 +6,5 @@
|
|||||||
*.o
|
*.o
|
||||||
.DS_Store
|
.DS_Store
|
||||||
.token
|
.token
|
||||||
|
.vscode/*
|
||||||
|
.ipynb_c*
|
106
run.py
Normal file
106
run.py
Normal file
@ -0,0 +1,106 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import csv
|
||||||
|
import regex as re
|
||||||
|
import nltk
|
||||||
|
from collections import Counter, defaultdict
|
||||||
|
import string
|
||||||
|
import unicodedata
|
||||||
|
|
||||||
|
def main():
|
||||||
|
try:
|
||||||
|
nltk.data.find('tokenizers/punkt')
|
||||||
|
except LookupError:
|
||||||
|
nltk.download('punkt')
|
||||||
|
|
||||||
|
with open("in-header.tsv") as f:
|
||||||
|
in_cols = f.read().strip().split("\t")
|
||||||
|
|
||||||
|
with open("out-header.tsv") as f:
|
||||||
|
out_cols = f.read().strip().split("\t")
|
||||||
|
|
||||||
|
data = pd.read_csv(
|
||||||
|
"train/in.tsv.xz",
|
||||||
|
sep="\t",
|
||||||
|
on_bad_lines='skip',
|
||||||
|
header=None,
|
||||||
|
# names=in_cols,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
)
|
||||||
|
|
||||||
|
train_labels = pd.read_csv(
|
||||||
|
"train/expected.tsv",
|
||||||
|
sep="\t",
|
||||||
|
on_bad_lines='skip',
|
||||||
|
header=None,
|
||||||
|
# names=out_cols,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
)
|
||||||
|
|
||||||
|
train_data = data[[7, 6]]
|
||||||
|
train_data = pd.concat([train_data, train_labels], axis=1)
|
||||||
|
|
||||||
|
train_data["final"] = train_data[7] + train_data[0] + train_data[6]
|
||||||
|
|
||||||
|
model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
|
|
||||||
|
train_model(train_data, model)
|
||||||
|
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
|
||||||
|
predict_data("test-A/in.tsv.xz", "test-A/out.tsv", model)
|
||||||
|
|
||||||
|
def clean_text(text):
|
||||||
|
return re.sub(r"\p{P}", "", str(text).lower().replace("-\\n", "").replace("\\n", " "))
|
||||||
|
|
||||||
|
def train_model(data, model):
|
||||||
|
for _, row in data.iterrows():
|
||||||
|
words = nltk.word_tokenize(clean_text(row["final"]))
|
||||||
|
for w1, w2 in nltk.bigrams(words, pad_left=True, pad_right=True):
|
||||||
|
if w1 and w2:
|
||||||
|
model[w2][w1] += 1
|
||||||
|
for w1 in model:
|
||||||
|
total_count = float(sum(model[w1].values()))
|
||||||
|
for w2 in model[w1]:
|
||||||
|
model[w2][w1] /= total_count
|
||||||
|
|
||||||
|
|
||||||
|
def predict(word, model):
|
||||||
|
predictions = dict(model[word])
|
||||||
|
most_common = dict(Counter(predictions).most_common(5))
|
||||||
|
|
||||||
|
total_prob = 0.0
|
||||||
|
str_prediction = ""
|
||||||
|
|
||||||
|
for word, prob in most_common.items():
|
||||||
|
total_prob += prob
|
||||||
|
str_prediction += f"{word}:{prob} "
|
||||||
|
|
||||||
|
if not total_prob:
|
||||||
|
return "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||||
|
|
||||||
|
if 1 - total_prob >= 0.01:
|
||||||
|
str_prediction += f":{1-total_prob}"
|
||||||
|
else:
|
||||||
|
str_prediction += f":0.01"
|
||||||
|
|
||||||
|
return str_prediction
|
||||||
|
|
||||||
|
|
||||||
|
def predict_data(read_path, save_path, model):
|
||||||
|
data = pd.read_csv(
|
||||||
|
read_path,
|
||||||
|
sep="\t",
|
||||||
|
error_bad_lines=False,
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE
|
||||||
|
)
|
||||||
|
with open(save_path, "w") as file:
|
||||||
|
for _, row in data.iterrows():
|
||||||
|
words = nltk.word_tokenize(clean_text(row[6]))
|
||||||
|
if len(words) < 3:
|
||||||
|
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||||
|
else:
|
||||||
|
prediction = predict(words[-1], model)
|
||||||
|
file.write(prediction + "\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
211
testing.ipynb
Normal file
211
testing.ipynb
Normal file
@ -0,0 +1,211 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"id": "21c9b695",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import csv\n",
|
||||||
|
"import regex as re\n",
|
||||||
|
"import nltk\n",
|
||||||
|
"from collections import Counter, defaultdict\n",
|
||||||
|
"import string\n",
|
||||||
|
"import unicodedata\n",
|
||||||
|
"\n",
|
||||||
|
"def clean_text(text): \n",
|
||||||
|
" return re.sub(r\"\\p{P}\", \"\", str(text).lower().replace(\"-\\\\n\", \"\").replace(\"\\\\n\", \" \"))\n",
|
||||||
|
"\n",
|
||||||
|
"def train_model(data, model):\n",
|
||||||
|
" for _, row in data.iterrows():\n",
|
||||||
|
" words = nltk.word_tokenize(clean_text(row[\"final\"]))\n",
|
||||||
|
" for w1, w2 in nltk.bigrams(words, pad_left=True, pad_right=True):\n",
|
||||||
|
" if w1 and w2:\n",
|
||||||
|
" model[w2][w1] += 1\n",
|
||||||
|
" for w1 in model:\n",
|
||||||
|
" total_count = float(sum(model[w1].values()))\n",
|
||||||
|
" for w2 in model[w1]:\n",
|
||||||
|
" model[w2][w1] /= total_count\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"def predict(word, model):\n",
|
||||||
|
" predictions = dict(model[word])\n",
|
||||||
|
" most_common = dict(Counter(predictions).most_common(5))\n",
|
||||||
|
"\n",
|
||||||
|
" total_prob = 0.0\n",
|
||||||
|
" str_prediction = \"\"\n",
|
||||||
|
"\n",
|
||||||
|
" for word, prob in most_common.items():\n",
|
||||||
|
" total_prob += prob\n",
|
||||||
|
" str_prediction += f\"{word}:{prob} \"\n",
|
||||||
|
"\n",
|
||||||
|
" if not total_prob:\n",
|
||||||
|
" return \"the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1\"\n",
|
||||||
|
"\n",
|
||||||
|
" if 1 - total_prob >= 0.01:\n",
|
||||||
|
" str_prediction += f\":{1-total_prob}\"\n",
|
||||||
|
" else:\n",
|
||||||
|
" str_prediction += f\":0.01\"\n",
|
||||||
|
"\n",
|
||||||
|
" return str_prediction\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"def predict_data(read_path, save_path, model):\n",
|
||||||
|
" data = pd.read_csv(\n",
|
||||||
|
" read_path, sep=\"\\t\", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE\n",
|
||||||
|
" )\n",
|
||||||
|
" with open(save_path, \"w\") as file:\n",
|
||||||
|
" for _, row in data.iterrows():\n",
|
||||||
|
" words = nltk.word_tokenize(clean_text(row[7]))\n",
|
||||||
|
" if len(words) < 3:\n",
|
||||||
|
" prediction = \"the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1\"\n",
|
||||||
|
" else:\n",
|
||||||
|
" prediction = predict(words[-1], model)\n",
|
||||||
|
" file.write(prediction + \"\\n\")\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"id": "e39473e2",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"with open(\"in-header.tsv\") as f:\n",
|
||||||
|
" in_cols = f.read().strip().split(\"\\t\")\n",
|
||||||
|
"\n",
|
||||||
|
"with open(\"out-header.tsv\") as f:\n",
|
||||||
|
" out_cols = f.read().strip().split(\"\\t\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"id": "bde510c9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"['FileId', 'Year', 'LeftContext', 'RightContext']"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"in_cols"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"id": "0e8b31dd",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"['Word']"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"out_cols"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "7662d802",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"data = pd.read_csv(\n",
|
||||||
|
" \"train/in.tsv.xz\",\n",
|
||||||
|
" sep=\"\\t\",\n",
|
||||||
|
" on_bad_lines='skip',\n",
|
||||||
|
" header=None,\n",
|
||||||
|
" # names=in_cols,\n",
|
||||||
|
" quoting=csv.QUOTE_NONE,\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"train_labels = pd.read_csv(\n",
|
||||||
|
" \"train/expected.tsv\",\n",
|
||||||
|
" sep=\"\\t\",\n",
|
||||||
|
" on_bad_lines='skip',\n",
|
||||||
|
" header=None,\n",
|
||||||
|
" # names=out_cols,\n",
|
||||||
|
" quoting=csv.QUOTE_NONE,\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"train_data = data[[7, 6]]\n",
|
||||||
|
"train_data = pd.concat([train_data, train_labels], axis=1)\n",
|
||||||
|
"\n",
|
||||||
|
"train_data[\"final\"] = train_data[7] + train_data[0] + train_data[6]\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "c3d2cfec",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"train_data"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "bd92ba07",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"\n",
|
||||||
|
"model = defaultdict(lambda: defaultdict(lambda: 0))\n",
|
||||||
|
"\n",
|
||||||
|
"train_model(train_data, model)\n",
|
||||||
|
"predict_data(\"dev-0/in.tsv.xz\", \"dev-0/out.tsv\", model)\n",
|
||||||
|
"predict_data(\"test-A/in.tsv.xz\", \"test-A/out.tsv\", model)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "ad23240e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.10.1"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user