import pandas as pd import csv import regex as re import nltk from collections import Counter, defaultdict import string import unicodedata def main(): try: nltk.data.find('tokenizers/punkt') except LookupError: nltk.download('punkt') with open("in-header.tsv") as f: in_cols = f.read().strip().split("\t") with open("out-header.tsv") as f: out_cols = f.read().strip().split("\t") data = pd.read_csv( "train/in.tsv.xz", sep="\t", on_bad_lines='skip', header=None, # names=in_cols, quoting=csv.QUOTE_NONE, ) train_labels = pd.read_csv( "train/expected.tsv", sep="\t", on_bad_lines='skip', header=None, # names=out_cols, quoting=csv.QUOTE_NONE, ) train_data = data[[7, 6]] train_data = pd.concat([train_data, train_labels], axis=1) train_data["final"] = train_data[7] + train_data[0] + train_data[6] model = defaultdict(lambda: defaultdict(lambda: 0)) train_model(train_data, model) predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv", model) predict_data("test-A/in.tsv.xz", "test-A/out.tsv", model) def clean_text(text): return re.sub(r"\p{P}", "", str(text).lower().replace("-\\n", "").replace("\\n", " ")) def train_model(data, model): for _, row in data.iterrows(): words = nltk.word_tokenize(clean_text(row["final"])) for w1, w2 in nltk.bigrams(words, pad_left=True, pad_right=True): if w1 and w2: model[w2][w1] += 1 for w1 in model: total_count = float(sum(model[w1].values())) for w2 in model[w1]: model[w2][w1] /= total_count def predict(word, model): predictions = dict(model[word]) most_common = dict(Counter(predictions).most_common(5)) total_prob = 0.0 str_prediction = "" for word, prob in most_common.items(): total_prob += prob str_prediction += f"{word}:{prob} " if not total_prob: return "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1" if 1 - total_prob >= 0.01: str_prediction += f":{1-total_prob}" else: str_prediction += f":0.01" return str_prediction def predict_data(read_path, save_path, model): data = pd.read_csv( read_path, sep="\t", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE ) with open(save_path, "w") as file: for _, row in data.iterrows(): words = nltk.word_tokenize(clean_text(row[6])) if len(words) < 3: prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1" else: prediction = predict(words[-1], model) file.write(prediction + "\n") if __name__ == "__main__": main()